This manual contains important safety information. Please ensure it is thoroughly read and understood before installing, operating or maintaining the equipment.
The Rotork Setting Tool and Setting Tool Pro allows actuator control, indication and protection functions to be configured to suit site requirements. In addition, the new Rotork Bluetooth® Setting Tool Pro also allows downloading of Datalogger and uploading/downloading of configuration files. Files are transferred to and from the Bluetooth® Setting Tool Pro via Insight II.

It is essential that all the actuator settings are checked for compatibility with the valve, process and control system requirements before the actuator is put into service. Please read this publication before proceeding.

When Rotork personnel or nominated agents are contracted to carry out site commissioning and/or acceptance, documentation of commissioned actuator configuration can be made available for customer records.
This manual provides instruction on:

- Electrical (local and remote) and optional manual operation.
- Preparation and installation of the actuator onto the valve.
- Subsequent commissioning and adjustment of the Basic Settings for correct valve operation.
- Commissioning and adjustment of the Configuration Settings to suit site-specific control and indication requirements.
- Maintenance and Troubleshooting.
- Sales and Service.

THE ROTORK FLUID SYSTEMS EH Pro RANGE – A RELIABLE SOLUTION FOR ELECTRIC FAILSAFE AND MODULATING VALVE CONTROL THAT YOU CAN COMMISSION AND INTERROGATE WITHOUT REMOVING ELECTRICAL COVERS.

Using the supplied infrared / Bluetooth setting sool to access the actuator set up procedures, non-intrusive setting of internal hydraulic pressure levels, position limits and all other control and indication functions can be made safely, quickly and conveniently, even in hazardous locations.

Standard diagnostics information about the control system, valve and actuator status in the form of display icons and help screens.

Setup, Alarm and status text is available in English (default). Other languages are available upon request.

Instantaneous internal hydraulic pressure and position can be monitored on the actuator with a single key press of the Setting Tool.

The on board Datalogger captures operational and valve data enabling informed maintenance choices to be made. Insight II software for PC allows the Datalogger to be interrogated, as well as the complete actuator set up to be configured and recorded.

Visit our web site at www.rotork.com for more information on the EH Pro, Insight II and other Rotork actuator ranges.
The Rotork EH Pro Range of self-contained, electro-hydraulic actuators include an integrated control module; a hydraulic manifold; and a power unit consisting of a motor, hydraulic pump and reservoir. EH actuators are available in double-acting or spring-return configurations for both quarter-turn and linear applications.

They can be configured to mount in any position, including remote mounting of the control module and/or hydraulic power unit (HPU). Torque requirements up to 600,000 Nm (5.3 million lbf-in) and thrusts up to 5,500,000 N (1.2 million lbs) can be accommodated.

All electronics are protected in a watertight or explosion-proof enclosure. Other features include local manual control, indication feedback via dry contacts and 4-20 mA signal; or optional digital control via Modbus, Foundation Fieldbus, Profibus, DeviceNet or Rotork Pakscan communication systems. The EH Range can be supplied for operation with virtually any single phase, three phase, or 24 VDC power supply.

Visit our web site at www.rotork.com for more information on the EH, Insight II and other Rotork actuator ranges.
Identifying Actuator Parts

- 1/2" NPT Cable Entries
- Local/Remote Switch
- Open/Close Switch
- Filler/Breather
- Manual
- Override
- Pump
- Hydraulic
- Reservoir
- Oil Drain Plug
- Pump
- Motor
- Actuator Center Body
- Hydraulic Cylinder
- Manual Override Lever
- Manifold
- Accumulator (if applicable)
- Terminal Compartment
- Display Window
- Control Module
- Speed Control Valves
- Motor
- Actuator Center Body
- Hydraulic Cylinder
- Accumulator (if applicable)
- Display Window
- Control Module
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health and Safety</td>
<td>1</td>
</tr>
<tr>
<td>Storage</td>
<td>3</td>
</tr>
<tr>
<td>Operating your EH Pro Actuator</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Electrical Operation</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Display – Local Indication</td>
<td>4</td>
</tr>
<tr>
<td>3.3 Display Status Indication – Travel</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Display Status Indication – Control</td>
<td>5</td>
</tr>
<tr>
<td>3.5 Display Alarm Indication</td>
<td>6</td>
</tr>
<tr>
<td>3.6 ESD Signal</td>
<td>7</td>
</tr>
<tr>
<td>3.7 Partial Stroke</td>
<td>7</td>
</tr>
<tr>
<td>3.8 Limit Switches</td>
<td>7</td>
</tr>
<tr>
<td>3.9 Speed Control</td>
<td>7</td>
</tr>
<tr>
<td>Optional Manual Operation</td>
<td>8</td>
</tr>
<tr>
<td>Mounting the Actuator</td>
<td>9</td>
</tr>
<tr>
<td>5.1 Lifting</td>
<td>9</td>
</tr>
<tr>
<td>5.2 Mounting Orientation</td>
<td>9</td>
</tr>
<tr>
<td>5.3 Fitting to Valve</td>
<td>9</td>
</tr>
<tr>
<td>5.4 Mechanical Travel Adjustment</td>
<td>9</td>
</tr>
<tr>
<td>5.5 Hydraulic Fluid</td>
<td>9</td>
</tr>
<tr>
<td>5.6 Power Accumulators</td>
<td>9</td>
</tr>
<tr>
<td>Cable Connections</td>
<td>10</td>
</tr>
<tr>
<td>6.1 Earth/Ground Connections</td>
<td>10</td>
</tr>
<tr>
<td>6.2 Removing Terminal Cover</td>
<td>10</td>
</tr>
<tr>
<td>6.3 Cable Entry</td>
<td>10</td>
</tr>
<tr>
<td>6.4 Connecting to Terminals</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comissioning</td>
<td>12</td>
</tr>
<tr>
<td>7.1 Setting Procedure</td>
<td>12</td>
</tr>
<tr>
<td>7.2 Rotork Setting Tool (old version)</td>
<td>13</td>
</tr>
<tr>
<td>7.3 Rotork Setting Tool Pro</td>
<td>14</td>
</tr>
<tr>
<td>7.4 Rotork Bluetooth® Setting Tool Pro</td>
<td>15</td>
</tr>
<tr>
<td>7.5 Entering the Actuator Setting Procedure</td>
<td>17</td>
</tr>
<tr>
<td>7.6 Setting Mode – Password</td>
<td>17</td>
</tr>
<tr>
<td>7.7 New Password [PC]</td>
<td>17</td>
</tr>
<tr>
<td>7.8 Checking Mode</td>
<td>17</td>
</tr>
<tr>
<td>7.9 Bluetooth Diagnostics & Configuration</td>
<td>18</td>
</tr>
<tr>
<td>7.10 Partial Stroke Test</td>
<td>18</td>
</tr>
<tr>
<td>7.11 Full Stroke Test</td>
<td>19</td>
</tr>
<tr>
<td>7.12 Crossroad [Cr]</td>
<td>19</td>
</tr>
<tr>
<td>7.13 Actuator Display – Setting/Checking Mode</td>
<td>19</td>
</tr>
<tr>
<td>7.14 Returning to Valve Position Display</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissioning – Basic Functions</td>
<td>21</td>
</tr>
<tr>
<td>8.1 Menu Structure</td>
<td>21</td>
</tr>
<tr>
<td>Configuration Settings</td>
<td>29</td>
</tr>
<tr>
<td>Configuration Settings Contents</td>
<td>29</td>
</tr>
<tr>
<td>9.1 Accessing Configuration Settings</td>
<td>29</td>
</tr>
<tr>
<td>9.2 Indication Contacts r1</td>
<td>30</td>
</tr>
<tr>
<td>9.3 General Settings</td>
<td>31</td>
</tr>
<tr>
<td>9.4 Digital Control</td>
<td>33</td>
</tr>
<tr>
<td>9.5 ESD / Partial Stroke Settings</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance, Monitoring and Troubleshooting</td>
<td>64</td>
</tr>
<tr>
<td>10.1 Maintenance, Monitoring and Troubleshooting</td>
<td>64</td>
</tr>
<tr>
<td>10.2 Environmental</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help Screens</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights and Measures</td>
<td>71</td>
</tr>
<tr>
<td>12.1 Binary, Hexadecimal and Decimal Conversion Table</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator Nameplate</td>
<td>72</td>
</tr>
<tr>
<td>Hazardous Area Approvals</td>
<td>73</td>
</tr>
<tr>
<td>14.1 Approved Fuses</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Conditions of Safe Use</td>
<td>74</td>
</tr>
<tr>
<td>Appendix A</td>
<td>74</td>
</tr>
<tr>
<td>Accumulator Precharge and Removal</td>
<td>74</td>
</tr>
</tbody>
</table>
This manual is produced to enable a competent user to install, operate, adjust and inspect Rotork EH range of actuators. Rotork EH range of actuators may have features not covered in this manual; always refer to order specific operating documentation. Only persons competent by virtue of their training or experience should install, maintain and repair Rotork actuators. Work undertaken must be carried out in accordance with the instructions in this and other relevant manuals. The user and those persons working on this equipment should be familiar with their responsibilities under any statutory provisions relating to the Health and Safety of their workplace. Due consideration of additional hazards should be taken when using the EH range of actuators with other equipment. Should further information and guidance relating to the safe use of the Rotork EH range of actuators be required, it will be provided on request. The electrical installation, maintenance and use of these actuators should be carried out in accordance with the National Legislation and Statutory Provisions relating to the safe use of this equipment, applicable to the site of installation.

For the UK: Electricity at Work Regulations 1989 and the guidance given in the applicable edition of the “IEE Wiring Regulations” should be applied. Also the user should be fully aware of his duties under the Health and Safety Act 1974.

For the USA: NFPA70, National Electrical Code ® is applicable. The mechanical installation should be carried out as outlined in the manual and also in accordance with relevant standards. Since Rotork EH range actuators may include features not covered in this manual, always refer to order specific documentation, including operating instruction, hydraulic schematic (HS) and wiring diagram (WD). If the actuator has nameplates indicating that it is suitable for installation in hazardous areas then the actuator may be installed in Zone 1 and Zone 2 classified hazardous area locations only. It should not be installed in hazardous area locations with an ignition temperature less than 135 °C, unless suitability for lower ignition temperatures has been indicated on the actuator nameplate.

It should only be installed in hazardous area locations compatible with the gas groups stated on the nameplate. The electrical installation, maintenance and the use of the actuator should be carried out in accordance with the code of practice relevant for that particular hazardous area certification. No inspection or repair should be undertaken unless it conforms to the specific hazardous area certification requirements. Under no circumstances should any modification or alteration be carried out on the actuator as this could invalidate the actuators hazardous area approval certification.

Access to live electrical conductors is forbidden in the hazardous area unless this is done under a special permit to work, otherwise all power should be isolated and the actuator moved to a non-hazardous area for repair or attention.

Trained service technicians are available to assist with or perform commissioning and maintenance. If you have any questions or concerns regarding installation, commissioning, maintenance, or operation, contact your local Rotork office for assistance.

EH actuators utilise hydraulic fluid. Refer to applicable specification for type required. Always wear safety glasses and appropriate protective clothing including gloves when working with hydraulic fluid. Also remove any jewelry or other objects that might conduct electricity. Prior to performing any maintenance, make sure that electric power to the actuator is removed and that hydraulic system pressure is released. Hydraulic fluid is a hazardous material. Consult the material safety data sheet (MSDS) for detailed health and safety information. Fluids should be contained and disposed of properly in accordance with applicable regulations.

1 Health and Safety
WARNING: Compressed Springs
All springs within the EH range of actuators are pre-compressed. Springs must not be removed from the actuator.

WARNING: Hydraulic Fluid
EH actuators are filled with hydraulic fluid. See actuator data label for type of oil supplied.
Should there be a requirement to change the fluid, then the appropriate protective clothing including gloves and safety glasses must be worn. Used hydraulic fluid must be disposed of safely (see environmental section).

Note: the PRODUCT SAFETY DATA SHEETS covering the type of hydraulic oil supplied by Rotork Fluid Systems for use within the supplied power units are available on request.

WARNING: Operating by Hand
With respect to optional manual operation of Rotork Fluid Systems actuators, see warnings in Section 4.

WARNING: Actuator may start and operate when remote is selected. This will be dependent on remote control signal status and actuator configuration.

WARNING: This actuator must only be located in areas where the risk of impact to the viewing window is low.
The user must ensure that the operating environment and any materials surrounding the actuator cannot lead to a reduction in the safe use of, or the protection afforded by, the actuator.

Where appropriate the user must ensure the actuator is suitably protected against its operating environment.

Products manufactured by Rotork Fluid Systems do not present a hazard to health under normal conditions of storage, distribution and use, provided that good industrial and hygiene procedures are followed.

If your actuator cannot be installed immediately, store it in a dry place until you are ready to connect incoming cables.

If the actuator is to be installed, but not immediately cabled, it is recommended that any plastic cable entry transit plugs be replaced with a suitable metal plug.

The double-sealed construction of the terminal compartment will preserve internal electrical components perfectly if left undisturbed.

It is not necessary to remove the electrical compartment covers in order to commission the EH actuator.

Plug any open hydraulic ports or electrical entries.

Fill the reservoir with the proper hydraulic oil to protect the interior from corrosion.

Visually inspect the equipment periodically to identify any potential corrosion. Repair as required.

Do not store in direct sunlight to avoid premature weathering.

Rotork Fluid Systems will not accept responsibility for deterioration caused on site once the covers are removed.

Every Rotork Fluid Systems actuator has been fully tested before leaving the factory to give years of trouble free operation, providing it is correctly commissioned, installed and sealed.

Do not store in temperatures beyond the normal operating range as stated on data label.
3.1 Electrical Operation
Check that the power supply voltage agrees with that on the actuator nameplate. Switch on power supply. It is necessary to check phase rotation (on 3-phase units). Proper lead connections can be verified by viewing the pump/motor fan while in operation. It should rotate clockwise. If rotation is anti-clockwise, reverse leads.

WARNING: Do not operate the actuator electrically without first checking, using the setting tool that at least the Basic Settings have been made. Refer to Section 8.

Selecting Local/Stop/Remote Operation
The selector enables either Local or Remote control, lockable in each position using a padlock with a 6.5mm hasp.

When the selector is locked in the Local or Remote positions the Stop facility is still available. The selector can also be locked in the Stop position to prevent electrical operation by Local or Remote control.

![Local Control](image)

Local Control
With the selector positioned at Local (clockwise) the lower black knob can be turned to select Open or Close. For Stop, turn upper knob anti-clockwise. Fig. 3.1.

![Remote Control](image)

Remote Control
Rotate the selector to the Remote position (anti-clockwise), this allows remote control signals to operate the actuator. Local Stop can still be used by turning the upper knob clockwise.

3.2 Display–Local Indication

![The Actuator Display](image)

The display consists of:

1. **Position Display** – This is the main 7-segment position display with icons.
2. **Text Display** – This is a 2 line, 16 characters dot matrix display which allows text to be used to compliment the position display and icons.
3. **Infrared LED’s.**
4. **2 x LED’s for position indication.**
5. **Alarm Icon** – This will be displayed for Valve, Control, and Actuator alarms. Alarm indication is supported by fault description text in the lower display.
6. **IR Icon** – This icon flashes during infrared communication activity.
7. **Percentage Open Icon** – This icon will be displayed when a percentage Open value is in the upper display.
8. **System Pressure** – Hydraulic system pressure is indicated by a gauge on the manifold. The pump will run automatically as required to maintain adequate system pressure. For actuators with accumulators, the motor is controlled by an internal or external pressure switch.

On power up the actuator’s liquid crystal display screen is back-lit with an amber light and one of the indicator LED’s will be on, dependent on position. The display screen will show percentage open or an end of travel symbol. (See Figs 3.3, 3.4 and 3.5)

As standard, the red LED signifies valve open, amber intermediate, and green valve closed. Open and closed colour functions can be reversed on request.
Open
The Red LED will be lit, the open symbol and "Open Limit" will be displayed.

Closed
The Green LED will be lit, closed symbol and "Closed Limit" will be displayed.

Mid Travel
The Amber LED will be lit, percentage open value will be shown and "Stopped" will be displayed when there is no actuator movement.

LED Indicators

⚠️ WARNING: Mid Travel LED colour may be affected by viewing angle and lighting level.
The Close LED colour can be changed to red if required. Refer to section 9.3.

3.3 Display Status Indication – Travel
The EH display provides real time status indication. The top line of the text display is reserved for travel status indication. Fig 3.6 shows the travel status example Closed Limit.

Available travel status conditions displayed:
- **Closed Limit** Actuator has reached the set closed limit position.
- **Open Limit** Actuator has reached the set open limit position.
- **Moving Open** Actuator is traveling in the open direction.
- **Moving Closed** Actuator is traveling in the closed direction.
- **Stopped** Actuator has stopped in a mid travel position, indicated in the top display (%open).

3.4 Display Status Indication – Control
The bottom line of the text display is reserved for control status indication and is displayed for approximately 2 seconds after the control mode or signal is applied. Fig 3.7 shows the control status example Remote Control.

Available control status conditions displayed:
- **Local Control** Local control selected.
- **Local Stop** Local stop selected.
- **Remote Control** Remote control selected.

Timer Active
Interrupter Timer option enabled only. Interrupter Timer has stopped the actuator mid travel for a period equal to the set Timer Off time. Refer to section 9.8.
• Local Close Local close signal applied.
• Local Open Local open signal applied.
• Remote Close Remote close (hardwired or analogue) signal applied.
• Remote Open Remote open (hardwired or analogue) signal applied.
• Remote ESD Remote hardwired emergency shut down signal applied.
• Remote Bus Open Remote Bus * open signal applied.
• Remote Bus Close Remote Bus* close signal applied.
• Remote Bus ESD Remote Bus* emergency shut down signal applied.
• BT Connected The actuator is connected via Bluetooth to either a setting tool or PC.

* Bus Control option fitted may be Pakscan, Profibus, Modbus, DeviceNet or Foundation Fieldbus. Refer to actuator wiring diagram.

3.5 Display Alarm Indication

The EH display provides alarm indication in the form of text and alarm icons.

General Alarm: !

The general alarm icon will be supported with text in the bottom line indicating the particular alarm, or if more than one is present, each alarm will be displayed in sequence.

Fig 3.8 shows the status example MID TRAVEL OP (Mid Travel Over Pressure).

Available alarm conditions displayed:

Valve Alarms
• OP IN MID POS - Tripped off on pressure while moving in either direction between electrical limits after a signal to move.
• OP AT LIMIT - Tripped off on pressure while moving in either direction between the electrical limit and the mechanical end stop after a signal to move.
• STALL IN MID POS - No movement detected between electrical limits after a signal to move.
• STALL AT LIMIT - No movement detected between the electrical limit and the mechanical end stop after a signal to move.

Control Alarms
• DEMAND FAULT - This fault indicates that the analogue demand signal has dropped below half the minimum set demand signal. In a 4-20 mA system the demand signal has dropped below 2 mA, or it goes above 22mA.
• PS UNABLE TO RUN - The actuator may not be at the correct limit to start the test or a new command was issued before the test was complete.
• MANUAL RESET ON - The actuator needs to be manually reset after either a ESD command or mains failure. Refer to 9.5 ESD Manual Reset.
• ESD ACTIVE - When present the ESD signal overrides all local and remote control signals. Once the ESD action is carried out operation is inhibited while the ESD signal is maintained. Refer to 9.5 ESD Action.

Actuator Alarms
• CONFIG ERROR - There may be an error in the configuration (set up) of the actuator. Check and reset basic setting and check configuration settings.
• ELECTRONIC FAULT - A hardware fault is caused by an internal fault on the Main PCBA which prevents it from reading its inputs. This is critical and inhibits operation. This fault may be cleared by removing the mains power from the actuator and waiting for 20 seconds.
• LOCAL CONTROL FAIL - This indicates a fault caused by either a Main Board failure, local control switch failure or conflicting signals from the switches. For example, both Local and Remote or Open and Close selected simultaneously.
• SOL DRIVE FAULT - Contact Rotork.
• POS SENSOR FAULT - Detected failure in the position sensing system – contact Rotork.
• PRES SENSE FAULT - Detected failure in the pressure sensing system – contact Rotork.
• WRONG DIRECTION - This indicates that the actuator has started to move in the opposite direction to the given command. When this occurs the actuator is stopped.
• PS ERROR - This indicates that a fault occurred while the actuator was attempting a partial stroke.
• OPTION CH 1 FAULT - Contact Rotork.
• OPTION CH 2 FAULT - Contact Rotork.
• EEPROM MISSING - Contact Rotork.
3.6 ESD Signal
A dedicated ESD digital input is provided with all standard actuators. The actuator may be configured to Fail-in-Position, Fail Close or Fail Open. The ESD signal can also be configured to override the Local Stop command.

Double-acting units without an optional accumulator require power to the motor in order to stroke the actuator to the ESD position.

Refer to the wiring diagram for input terminals. Refer to Section 9.5 for settings.

3.7 Partial Stroke
A dedicated Partial Stroke input is provided as a standard feature for Open/Close applications. Its purpose is to verify valve and actuator operation without significant effect on valve flow.

Refer to the wiring diagram for input terminals. Refer to Section 9.5 for settings.

3.8 Limit Switches
When fitted, open and close limit switches are pre-set at the factory to correspond to the actuator mechanical travel stops. Pre-set positions should be checked to ensure full opening and closing of the valve.

Should adjustment be required, they must be manually set and are accessed by removal of the control module cover. The upper-most switch is the open switch; the lower is the close switch.

Switch cam adjustment is by fingertip rotation in either direction. Cams are compression spring loaded and are held in position by tapered centers.

Open and Close position limits must also be set via controller configuration. Refer to Section 8.

3.8.1 Open Switch Adjustment
Move the valve/actuator to the fully open position. Locate the proper switch cam. Push the cam down and rotate anti-clockwise until the switch operates and release the cam. The switch is now set.

3.8.2 Closed Switch Adjustment
Move the valve/actuator to the fully closed position. Locate the proper switch cam. Lift and turn the cam clockwise until the switch operates and release the cam. The switch is now set.

3.8.3 Four SPDT Option
Refer to DOC 1613.

3.9 Speed Control
Speed control is a standard feature only on the spring stroke of spring return actuators. For the hydraulic stroke of spring-return actuators and for double-acting actuators, it is an available option requiring the addition of a hydraulic power storage accumulator.

The speed of the hydraulic stroke is not adjustable by the Extend speed control. This is due to the nature of fixed displacement pumps. The Extend speed control should be fully anti-clockwise.

3.9.1 Spring-Return Adjustment (No Accumulator)
Only the stroke time for the spring stroke is adjustable. This is done with the needle valve labeled Retract on the hydraulic manifold. Loosen the jam nut and turn the needle valve clockwise to decrease the stroke time or anti-clockwise to increase stroke time.

The speed of the hydraulic stroke is not adjustable by the Extend speed control. This is due to the nature of fixed displacement pumps. The Extend speed control should be fully anti-clockwise.
3.9.2 Spring-Return Adjustment (Accumulator Fitted)

Speed Control of the spring stroke is adjusted as outlined in Section 3.9.1. The hydraulic stroke is adjusted by the Extend needle valve. Loosen the jam nut and turn the valve clockwise to decrease stroke time and anti-clockwise to increase stroke time.

3.9.3 Spring-Return Units for Positioning Applications

Positioning units will have an additional speed control labeled Retract Slow. This is used to slow the spring stroke as the actuator approaches its demand position. This will be factory set to maximize positioning accuracy and should not need adjusting.

3.9.4 Double-Acting Adjustment (Accumulator Fitted)

Speed control of double-acting units is not possible unless a hydraulic accumulator is supplied.

The speed control labeled NV-EXT and NV-RET are used to adjust the stroke time. Loosen the jam nut and turn the appropriate valve clockwise to decrease and anti-clockwise to increase.

3.9.5 Double-Acting Adjustment (No Accumulator)

Speed control is not available on double-acting units without an accumulator. This is due to the nature of fixed displacement pumps.

Optional manual operation may have been specified for your EH actuator. For all EH actuators, optional manual operation is provided with a hydraulic hand pump. When supplied, a pump with a removable handle is located on or near the power unit.

WARNING:
Manual override operation should only be carried out when there is no power supplied to the actuator.

Hand pump Operation

In most cases, a two-position lever on the side of the manifold selects the direction of travel. Some special actuators have a ball valve(s) to control hand pump operation. Consult your job specific hydraulic schematic for operation details.

WARNING:
See specific manual override label as supplied with actuator, for manual override procedure.

For units fitted with an external solenoid valve, an extra isolating valve is fitted inline with the valve, this must be set to ‘Manual’ to operate the manual override.

An isolation valve is also fitted for fail in position actuators, this must be set to ‘Manual’ to operate the manual override.

There is also a locking mechanism fitted to each ball valve to allow it to be locked in position by means of a padlock. It is recommended that a padlock is fitted for actuators being used in an ESD application.
5 Mounting the Actuator

5.1 Lifting

WARNING: Refer to weights and measures from job specific EH information for actuator weight.

Ensure the valve is secure before fitting the actuator as the combination may be top heavy and therefore unstable.

In no circumstances should hydraulic piping or electrical cabling be used for lifting purposes.

If it is necessary to lift the actuator using mechanical lifting equipment, certified slings should be attached. At all times trained and experienced personnel should ensure safe lifting, particularly when mounting actuators.

WARNING: The actuator should be fully supported until complete valve shaft engagement is achieved and the actuator is secured to the valve mounting flange.

Actuator to valve fixing must conform to material specification ISO Class 8.8, yield strength 628 N/sq mm.

5.4 Mechanical Travel Adjustment

When the actuator has been bolted to the valve flange or adaptor and keys inserted; the position of the stop bolts should be checked to ensure full opening and closing of the valve.

If the preset end positions are not suitable, the stop bolts may be adjusted by first loosening the jam nut and screwing the bolts in or out until the desired position is obtained. Stroke the yoke away from the stop bolt when adjusting then return to check position. When the correct position is obtained, re-tighten the jam nut.

Certain valves incorporate their own stops. In these cases, it is recommended that the actuator stop bolt positions coincide with the valve stop positions.

5.5 Hydraulic Fluid

EH actuators are supplied without hydraulic fluid and must be filled prior to operation. See Section 10.1 for the oil specification.

WARNING: If the actuator is fitted with an accumulator it must be drained to the reservoir before adding oil.

With the spring, or for double-acting actuators the piston, fully extended, fill the reservoir to approximately 50 mm (2 inches) below the top. Stroke the actuator two times and re-check the reservoir level. Add additional oil as required. Refer to Section 10.1 for the oil specification.

5.6 Power Accumulators

Some EH Range actuator configurations are equipped with hydraulic accumulators to store energy for stroking the actuator.

Accumulators must be pre-charged with dry nitrogen prior to operation. See Appendix A.
6 Cable Connections

WARNING:
Ensure all power supplies are isolated before removing actuator covers.

Check that the supply voltage is the same as that stated on the actuator nameplate.

A switch or circuit breaker must be included in the wiring installation to the actuator. The switch or circuit breaker shall be mounted as close to the actuator as possible and shall be marked to indicate that it is the disconnecting device for that particular actuator. The actuator must be protected with a suitably rated overcurrent protection device as defined on the applicable wiring diagram.

6.1 Earth/Ground Connections
An M8 X 1.0 earth stud is located adjacent to the conduit entries for attachment of an external protective earthing strap. An internal earth terminal is also provided on the terminal bung, however it must not be used alone as the protective Earth Connection.

6.2 Removing Terminal Cover
Using a 6mm hexagon key loosen the four captive screws evenly. Do not attempt to lever off the cover with a screwdriver as this will damage the o-ring seal and may damage the flamepath on a certified unit.

A plastic bag with the actuator contains the following:
- Terminal screws and washers.
- Spare cover o-ring seal.
- Wiring diagram.
- Instruction book.

6.3 Cable Entry
The four cable entries on the actuator terminal housing are tapped ½” NPT.

Only appropriate certified Explosion-Proof entry reducers, glands or conduit may be used in hazardous locations.

Remove any red plastic transit plugs. Make cable entries appropriate to the cable type and size. Ensure that threaded adaptors, cable glands or conduit are tight and fully waterproof. Seal unused cable entries with a steel or brass threaded plug. In hazardous areas an appropriately certified threaded blanking plug must be used.
6.4 Connecting to Terminals

⚠️ On EExde enclosure units connections to the power and control terminals must be made using AMP type 160292 ring tabs for power and earth terminals and AMP type 34148 ring tabs for the control terminals.

Refer to the wiring diagram inside the terminal cover to identify functions of terminals. Check that supply voltage is the same as that marked on the actuator nameplate.

Remove the red power terminal screen.

Begin by connecting these cables and replace the red power terminal screen.

When all connections are made, ensure wiring diagram is replaced in the terminal compartment.

6.5 Replacing Terminal Cover

Ensure cover o-ring seal and spigot joint are in good condition and lightly greased before re-fitting cover.

⚠️ WARNING: Ensure the oil fill plug is always tight before stroking the actuator in either direction.

ATTENTION: RED PLASTIC PLUGS IN CONDUIT ENTRIES ARE FOR TRANSIT ONLY. FOR LONG TERM PROTECTION FIT SUITABLE METAL PLUGS.

ATTENZIONE: I TAPPI IN PLASTICA ROSSA PER L’ENTRATA CAVI SONO SOLO TEMPORANEI. PER UNA PROTEZIONE PERMANENTE PREGO SOSTITUIRLI CON APPOSITI TAPPI METALLICI.

ATENCION: LOS TAPONES ROJOS DE PLASTICO EN LAS ENTRADAS DE CABLE SON ÚNICAMENTE PARA TRANSPORTE. PARA PROTECCION PERMANENTE COLOCAR TAPONES METALICOS APROPIADOS.

ACHTUNG: DIE ROTEN PLASTIKSTOPFEN SIND NUR FÜR DEN TRANSPORT GEEIGNET. FÜR DAVERHAFTEN SCHUTZ SIND DIESE GEGEN GEEIGNETE BLINDSTOPFEN AUSZUTAUSCHEN.

ATTENTION: LES BOUCHONS PLASTIQUES ASSURENT UNE PROTECTION TEMPORAIRE. POUR UNE PROTECTION DEFINITIVE UTILISER DES BOUCHONS METALLIQUES.

注意：接线端红色塑料堵头是运输途中使用。长期正常保护时请用金属堵头。

注意：接线端红色塑料堵头仅用于运输途中使用。

注意：接线端红色塑料堵头仅为运输途中使用。长期正常保护时请用金属堵头。

주의: 배선입구의 빨간색 플라스틱 플러그는 오직 임시용입니다. 오래 보관하기 위해서는 규격에 맞는 금속 플러그를 사용하십시오.
7.1 The Setting Procedure

The Rotork Fluid Systems EH actuators are designed so that commissioning may be carried out without removing any electrical covers.

Setting the internal hydraulic pressure, limit and other functions is achieved by using the Infrared Setting Tool. The Setting Tool is certified Intrinsically Safe to allow commissioning in hazardous areas.

All the commissioning functions are stored in non-volatile memory in the actuator. The Setting Tool enables the user to view all the functions in turn via the actuator display window. As each function is viewed its setting can be checked and, if required, changed within the bounds of that function.

The power supply must be connected and energised for commissioning purposes. The setting procedure is divided into two stages:

1. **Basic Settings**
 Setting end of travel limit actions, pressure values and limit positions.

2. **Configuration Settings**
 Settings covering the control, indication and optional equipment functions.

 All EH actuator functions are configured before despatch to Rotork Fluid Systems standard default settings unless alternatives have been specified with the order. Should difficulty be encountered during commissioning the default settings can be reinstated, returning the actuator configuration to its original manufactured state. Site commissioning can then begin again.

 The default function should be used with caution as settings selected after manufacture may be essential for the safe operation of the valve and/or plant.

 Actuator Display

 Position Display
 ![Position Display](50)
 This may be an open or closed symbol or a percentage open value.

 Pressure and Position
 ![Pressure and Position](50)
 Refer to Section 10.

 Password
 ![Password](P? PC Bt Pt FT)

 Crossroad
 ![Crossroad](cr)

 Basic Settings
 Limit Actions
 Pressure Values
 Limit Positions

 Configuration Settings
 Indication Contacts
 Control Mode
 Options
 Help Screens
 Defaults

⚠️ **Note:** The Basic Settings must be commissioned first.
7.2 Rotork Setting Tool (old version)

Specification

- **Enclosure**: IP67
- **Certification**: EEx ia IIC T4 (intrinsically safe), FM, INT SAFE, Class I & II Div 1 Groups A B C D E F G, T4A, CSA, Exia, Class I, II Div 1 Groups A B C D
- **Power supply**: 9V Battery (supplied and fitted)
- **Operating range**: 0.75m (from actuator display window)

Name

1. **↓ Key***: Display next function down
2. **→ Key***: Display next function across
3. **- Key**: Decrease/change displayed function's value or option setting
4. **+ Key**: Increase/change displayed function's value or option setting
5. **← Key**: Enter displayed value or option setting

Infrared local operation (when enabled)

- **← Key**: Non-functional on EH actuators
- **← Key**: Non-functional on EH actuators
- **Infrared Transmitter Window**

* Pressing the two arrow keys together returns the actuator display to the position indication mode
7.3 Rotork Setting Tool Pro

<table>
<thead>
<tr>
<th>Name</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>▼ Key*</td>
</tr>
<tr>
<td>2.</td>
<td>▲ Key</td>
</tr>
<tr>
<td>3.</td>
<td>→ Key*</td>
</tr>
<tr>
<td>4.</td>
<td>← Key</td>
</tr>
<tr>
<td>5.</td>
<td>- Key</td>
</tr>
<tr>
<td>6.</td>
<td>+ Key</td>
</tr>
<tr>
<td>7.</td>
<td>■ Key</td>
</tr>
<tr>
<td>8.</td>
<td>○ Key</td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>■ Key</td>
</tr>
<tr>
<td>11.</td>
<td>■ Key</td>
</tr>
</tbody>
</table>

* Pressing these two arrow keys together exits setting mode and returns the actuator display to the pressure/position indication mode.

Fig. 7.3. Rotork Setting Tool Pro

Specification

- Enclosure: IP54
- Temperature: Tamb = -30 °C to 50 °C
- Power supply: 2x 1.5V AA Batteries (supplied and fitted)
- Operating range: 0.75m (from actuator display window)
7 Commissioning continued

7.4 Rotork Bluetooth® Setting Tool Pro

Name Instruction
1. ⏐ Key* Display next function down.
2. ⬆ Key Display previous function up.
3. ← Key* Display next function across right.
4. → Key Display previous function across left.
5. - Key Decrease/change displayed function’s value or option setting.
6. + Key Increase/change displayed function’s value or option setting.
8. ← Key Enter displayed value or option setting.
9. Infrared transmitter window.
10. ⫹ Key Non-functional on EH actuators.
11. ⫸ Key Non-functional on EH actuators.

* Pressing these two arrow keys together exits setting mode and returns the actuator display to the pressure/position indication mode.

Fig. 7.4. Rotork Bluetooth® Setting Tool Pro

Specification
Enclosure: IP54
Certification: ATEX CE 0518 Ex II 1G
Temperature: Tamb = -30 ºC to 50 ºC
Power supply: 4 x 1.5V AAA Batteries (supplied and fitted)
Operating range: Infrared: 0.75m (from actuator display window)
 Bluetooth: 3m (from actuator display window)
Setting Tool Battery Replacement

Battery status can be checked by looking at the Infrared transmitter window while depressing any Setting Tool button. A flashing red indicator should be seen.

⚠️ Battery replacement must be carried out in a safe area. To replace the battery remove the six caphead screws in the back of the Setting Tool. Remove the back cover to expose the battery.

The Setting Tool (old version):

⚠️ In order to maintain hazardous area certification fit only Duracell mN1604 or Rayovac Alkaline maximum NoAL-9V battery types.

The Setting Tool Pro:

⚠️ In order to maintain hazardous area certification fit only with the following AA size, Alkaline-Manganese or Zinc-Manganese approved battery types:

- Duracell, Procell, type MN2400
- Energizer, type E92.

Refit cover ensuring red indicator LED faces the transmitter window in the back cover.

When a button is depressed the Setting Tool transmits the relevant instruction to the actuator by infrared pulses and must therefore be directly in front of the actuator indicator window and at a distance no greater than 0.75m.

The enclosure of the Rotork Setting Tool Pro, and Rotork Bluetooth® Setting Tool Pro, is manufactured from the following materials:

- Polycarbonate, ABS blend
- Polycarbonate
- Silicon Rubber

If the Rotork Setting Tool Pro and Rotork Bluetooth® Setting Tool Pro are likely to come into contact with aggressive substances (e.g. solvents that may affect polymetric materials), then it is the responsibility of the user to take suitable precautions (e.g. regular checks as part of the routine inspections or establishing that the materials are resistant to the specific chemical) that prevent it from being adversely affected, thus ensuring that the type of protection is not too compromised.

No form of repair must be attempted on any of the actuator Setting Tools.

Download / Upload Function

This new feature has been introduced with the new Rotork Bluetooth® Setting Tool Pro. It allows the user to download datalogger files and download/upload configuration files. The new tool is weatherproof and intrinsically safe and so it can be used safely in all environments. Refer to Bluetooth® Setting Tool Pro publication PUB095-001.

Display Set-Up Mode

The Setting Tool and Setting Tool arrow keys are used to access and navigate through the actuator set-up procedure using the actuator display. Each actuator function with it’s current setting is represented on screen by a combination of code and text.

The Setting Tool change keys (+ and −) allow the user to view the available setting options.

The examples of displayed functions Close Action, [C2] and Open Pressure, [OP] are shown above. Note that a setting option or value is highlighted.

This instruction manual uses both code and text for description.
7.5 Entering the Actuator Setting Procedure
With the actuator securely mounted on the valve, the mains supply on and Local control or Stop selected.

PRESS THE ↓ KEY.
The actuator upper display will remain the same and the lower display will change to Pressure value. This will be represented by Pressure = XX%,XXBAR or XXPSI and a bar graph.

PRESS THE ↓ KEY.
The actuator display will change and the password protection display will be seen.

7.6 Setting Mode – Password
To enable setting and adjustment of the actuator functions the correct password must be entered. The factory set (default) password is [ld]. If the actuator has previously been set with a site password this must be entered.

Use the + or − keys to scroll through the available passwords 00–FF (hexadecimal). With the correct password displayed press the enter key.

PRESS THE → KEY.
Two “setting” bars will appear and will remain visible on every function display screen. In addition, “Password Correct” will be displayed for 3 seconds.

7.7 New Password [PC]
To configure a new password, the actuator must be in setting mode with the password display – setting mode enabled – showing,

PRESS THE → KEY.
The display will change to [PC].

Using the + or − key scroll through the available passwords until the desired password is displayed.

PRESS THE → KEY.

Password Changed to [IE]

NOTE: The new password becomes effective the next time setting mode is entered.

7.8 Checking Mode
The actuator function settings can be checked without entering the correct password. The settings can only be viewed and not altered. The setting bars will not be seen.

Password Display, Checking Mode
Once the procedure has been completed in the required mode

PRESS THE ↓ KEY.
The procedure branch [Cr] (crossroad) display can now be seen.
7.9 Bluetooth Diagnostic and Configuration

EH Pro actuators include a Bluetooth interface as standard, allowing non-intrusive diagnostics, analysis and configuration.

Insight II software for PC has been developed to enable the actuator configuration and onboard Datalogger to be reconfigured and analysed. A PC running Insight II software can be used to interrogate the actuator via non-intrusive Bluetooth communication. Visit www.rotork.com for information.

Alternatively, the intrinsically safe Rotork Bluetooth® Setting Tool Pro allows the user to extract and store EH actuator configuration and Datalogger files within the tool. Stored files can then be uploaded via Bluetooth to a PC running Insight II where they can be viewed, analysed and stored in a safe, clean environment.

Using the Rotork Bluetooth® Setting Tool Pro, actuator setup can be configured on the PC, stored in the tool, transported to the actuator and uploaded. The tool can transfer the same configuration to multiple actuators where actuator setup is the same.

Refer to PUB095-001-00 for full instructions on the use of the Rotork Bluetooth® Setting Tool Pro.

To enable communication with Insight II, the actuators Bluetooth interface must be enabled.

The default setting for the Bluetooth interface is [OF] disabling Bluetooth.

[OFF] Off (Default): Bluetooth is disabled
[ON] On: Bluetooth is permanently enabled.
[LS] Local Stop Only: Bluetooth is only enabled when the actuator is in Local Stop.

To change this setting press the + or – key until the required setting is displayed.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

7.10 Partial Stroke Test

This function performs a partial stroke test based on the parameters set in [PP] and a setup test being completed in [SP]. Insight II can then be used to compare subsequent partial stroke tests against the original test when the actuator was first commissioned.

The actuator must be in Local to perform a test.

The actuator needs to be moved to the correct limit prior to initiating the test

[Pt] Perform the partial stroke test.

This brings up an option to either cancel or confirm that the partial stroke test should be completed.

To cancel the test: Ensure that [No] is displayed on the screen.

PRESS THE KEY.

To confirm that the test should be completed: Press the + key until the display changes to [Yes]

PRESS THE KEY.
7.11 Full Stroke Test
This function performs a full stroke test based on a setup test being completed in [SF]. Insight II can then be used to compare subsequent full stroke tests against the original test when the actuator was first commissioned.

The actuator must be in Local to perform a test.

The actuator needs to be moved to either the closed or open limit prior to initiating the test.

[Ft] Perform the partial stroke test.

This brings up an option to either cancel or confirm that the full stroke test should be completed.

To cancel the test: Ensure that [No] is displayed on the screen.

PRESS THE ← KEY.

To confirm that the test should be completed: Press the + key until the display changes to [yS]

PRESS THE → KEY.

7.12 Crossroad [Cr]

To access the Basic Settings press the arrow ↓ key. Refer to Section 9.

To access the Configuration Settings press the arrow → key. Refer to Section 9.

7.13 The Actuator Display – Setting/Checking Mode

Actuator functions as laid out in the Basic and Configuration commissioning stages, can be individually displayed by using the Setting Tool arrow keys.

The ↓ arrow key will always display the FIRST function on the next level DOWN within the procedure.

The → arrow key will always display the NEXT function on the SAME level and will wrap around the functions on the same level.

Actuator functions are displayed in code form in the top left portion of the liquid crystal display screen.

The setting for the displayed function is shown in the top right hand portion of the screen. Depending on the actuator function displayed, its setting may be an option or a value.

Text relating to the function and setting values will be displayed in the lower display.
In setting mode, the Setting Tool + or − keys will cause the setting to be changed. In checking mode, the settings cannot be altered.

In setting mode, once displayed, a new setting can be entered into the actuator memory by pressing the key. The setting will flash off and back on, confirming its selection, and "Stored" will be displayed for 2 seconds in the text display.

7.14 Returning to Valve Position Display

There are five ways of returning to valve position display:

1. Approximately 5 minutes after the last Setting Tool operation, the display will automatically return to position display.
2. Press the and arrow keys together.
3. Press the arrow key until the display returns to position.
4. Press the arrow key to return to position display.
5. Select Remote control using the Local/Stop/Remote selector.
ELECTRICAL OPERATION MUST NOT TAKE PLACE UNTIL THE BASIC SETTINGS HAVE BEEN MADE AND CHECKED.

The actuator’s Basic Settings affect the correct operation of the valve by the actuator. If the actuator has been supplied with the valve, the valve maker or supplier may have already made these settings.

This instruction assumes setting mode has been entered. Refer to section 7.6.

Viewing the Basic Settings

With the actuator mounted on the valve, the power supply on and Local or Stop control selected, point the setting tool at the actuator indicator window from a distance of no more than 0.75m. By pressing the key and, when appropriate, the key, it is possible to move through the procedure, displaying the various functions and their settings as shown in Fig. 8.1. The right-hand side of Fig. 8.1 explains the function of each LCD display.

⚠️ Settings and operation must be verified by electric operation and function test of the actuator to ensure correct operation.
Function Description

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Position Display (This may be an open or closed symbol or % open value)</td>
</tr>
<tr>
<td></td>
<td>Position and Internal Hydraulic Pressure Display</td>
</tr>
<tr>
<td>P? PC bt Pt Ft</td>
<td>Password → Password Change → Bluetooth → Partial Stroke Test → Full Stroke Test</td>
</tr>
<tr>
<td>Cr Cr</td>
<td>Crossroad → Configuration Settings, refer to section 7.1</td>
</tr>
<tr>
<td>C2 C3 CP cP OP oP</td>
<td>Close Action → Open Action</td>
</tr>
<tr>
<td>LC LO</td>
<td>Set Close Limit → Set Open Limit</td>
</tr>
</tbody>
</table>

BASIC SETTINGS CONTENTS

<table>
<thead>
<tr>
<th>BASIC SETTINGS CONTENTS</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Close Action</td>
<td>26</td>
</tr>
<tr>
<td>C3 Open Action</td>
<td>27</td>
</tr>
<tr>
<td>CP Close Pressure (Limit)</td>
<td>27</td>
</tr>
<tr>
<td>cP Close Pressure (Mid)</td>
<td>28</td>
</tr>
<tr>
<td>OP Open Pressure (Limit)</td>
<td>28</td>
</tr>
<tr>
<td>oP Open Pressure (Mid)</td>
<td>29</td>
</tr>
<tr>
<td>LC Set Close Limit</td>
<td>30</td>
</tr>
<tr>
<td>LO Set open Limit</td>
<td>30</td>
</tr>
</tbody>
</table>

Fig. 8.1 Basic Setting Displays
Commissioning – Basic Functions

Each actuator is built in the factory to be either Normally Closed, Normally Open or Stay-put depending on what configuration was ordered.

Normally Closed:
- Quarter-turn (spring-return clockwise)
- Linear (spring-return to extend)

Normally Open:
- Quarter-turn (spring-return anti-clockwise)
- Linear (spring-return to retract)

Consult factory if this configuration needs to be changed as it cannot be done through software alone.

The actuator can be configured to either close on Pressure (hydraulic or spring) for seating valves or Limit for non-seating valves.

C2 Close Action

The actuator can be configured to either close on Pressure (hydraulic or spring) for seating valves or Limit for non-seating valves.

[CP] Stop on Pressure (Default)
[CL] Stop on Limit

To change the function press the + or - key until the required setting is displayed.

PRESS THE KEY.

The displayed option will flash (stored), indicating that it has been set.
The actuator can be configured to either open on Pressure (hydraulic or spring) for back seating valves or Limit for non-back seating valves.

C3 Open Action

Refer to valve manufacturer for recommended setting.

- **OL** Stop on Limit (Default)
- **OP** Stop on Pressure

To change the function press the + or - key until the required setting is displayed.

PRESS THE ➔ KEY.

The displayed option will flash (stored), indicating that it has been set.

CP Close Pressure at Limit

This setting allows the maximum cut-off pressure in a normally open actuator while travelling from the closed electrical limit to the closed mechanical end stop to be set. The value set is a % of the maximum available pressure, which is limited by the pressure relief valve.

To change this value press the + or - key until the required setting is displayed.

PRESS THE ➔ KEY.

The displayed option will flash (stored), indicating that it has been set.
Close Pressure at Mid (cP)

This setting allows the maximum cut-off pressure in a normally open actuator while travelling in mid-travel between the open and closed electrical limits while closing to be set. If the value is set to 00, the pressure-off value from CP is used.

To change the function press the + or - key until the required setting is displayed.

PRESS THE -> KEY.

The displayed option will flash (stored), indicating that it has been set.

Open Pressure at Limit (OP)

This setting allows the maximum cut-off pressure in a normally closed actuator while travelling from the open electrical limit to the open mechanical end stop to be set. The value set is a % of the maximum available pressure, which is limited by the pressure relief valve.

To change the function press the + or - key until the required setting is displayed.

PRESS THE <-> KEY.

The displayed option will flash (stored), indicating that it has been set.
This setting allows the maximum cut-off pressure in a normally closed actuator while in mid-travel between the closed and open electrical limits while opening to be set. If the value is set to 00, the pressure-off value from OP is used.

To change the function press the + or - key until the required setting is displayed.

PRESS THE ◢ KEY.

The displayed option will flash (stored), indicating that it has been set.

⚠️ If the actuator fails to complete a closed or open valve operation due to the set pressure being reached, it may indicate a valve and/or process problem or change. It is the responsibility of the user to ensure the valve and process conditions are within the specified operational limits before increasing the pressure value.

\[P? \rightarrow PC \rightarrow bt \rightarrow Pt \rightarrow Ft \]
\[Cr \]
\[C2 \rightarrow C3 \]
\[CP \rightarrow cP \rightarrow OP \rightarrow oP \]
\[LC \rightarrow LO \]
\[50 \]

To set the closed and open electrical limits correctly, the actuator should be moved to both the closed and open mechanical limits and the positions stored. The actuator will then automatically scale in 2% from each end to set the electrical limits.

The number shown in the top right of the display screen when in either LC or LO, is the percentage of full scale read directly back from the positional feedback device.

When at either the closed or open limit, if the number on the screen is between 00 - 05 or 95 - 99, the actuator will indicate a PO fault and will not operate, its assumes that there is a problem with feedback device. If this is the case then the feedback device will require adjustment.
LC Set Closed Limit

Move the actuator to the closed position by using the local controls.

To change the function press the + or - key until the required setting is displayed.

PRESS THE KEY.

The displayed option will flash (stored), indicating that it has been set.

LO Set Open Limit

Move the actuator to the open position by using the local controls.

To change the function press the + or - key until the required setting is displayed.

PRESS THE KEY.

The displayed option will flash (stored), indicating that it has been set.
8.1 Menu Structure

Option card specific settings to be displayed when an option card is detected. Menu to be hidden if no card is fitted.
Having established that the Basic Settings have been correctly set, the Configuration Settings can now be configured to suit the site control and indication requirements.

It is possible to move through the various Configuration Settings as shown in Fig. 9.1 using the ➔ and ➔ keys.

The actuator model code will indicate any options fitted.

In order to display the Configuration Settings it is necessary to press the ➔ key until [Cr] appears.

If you have chosen to enter Configuration Settings in the checking mode the display will be as Fig. 9.1.

If you have chosen to enter Configuration Settings in the setting mode the display will be as Fig. 9.2

Refer to Section 7.
9.2 Indication Contact r1

Indication contact r1 may be set to trip for any one of the following functions:

<table>
<thead>
<tr>
<th>Code</th>
<th>Function (as displayed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CL]</td>
<td>Closed Limit</td>
</tr>
<tr>
<td>[OP]</td>
<td>Open Limit</td>
</tr>
<tr>
<td>[FA]</td>
<td>Fault Alarm</td>
</tr>
<tr>
<td>[Po]</td>
<td>Position % Open</td>
</tr>
<tr>
<td>[r1]</td>
<td>Motion</td>
</tr>
<tr>
<td>[dC]</td>
<td>Closing</td>
</tr>
<tr>
<td>[dO]</td>
<td>Opening</td>
</tr>
<tr>
<td>[rn]</td>
<td>Moving</td>
</tr>
<tr>
<td>[St]</td>
<td>Stall (mid-travel)</td>
</tr>
<tr>
<td>[SE]</td>
<td>Stall (end of travel)</td>
</tr>
<tr>
<td>[SP]</td>
<td>Stall (any position)</td>
</tr>
<tr>
<td>[Pt]</td>
<td>Over pressure (mid-travel)</td>
</tr>
<tr>
<td>[PE]</td>
<td>Over pressure (end of travel)</td>
</tr>
<tr>
<td>[PP]</td>
<td>Over pressure (any position)</td>
</tr>
<tr>
<td>[LS]</td>
<td>Stop Selected</td>
</tr>
<tr>
<td>[Lo]</td>
<td>Local Selected</td>
</tr>
<tr>
<td>[rE]</td>
<td>Remote Selected</td>
</tr>
<tr>
<td>[CA]</td>
<td>Control Alarm</td>
</tr>
<tr>
<td>[ES]</td>
<td>ESD Active</td>
</tr>
<tr>
<td>[tt]</td>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>[HA]</td>
<td>Manual override switch</td>
</tr>
<tr>
<td>[AS]</td>
<td>Accumulator pressure switch</td>
</tr>
<tr>
<td>[Er]</td>
<td>External manual reset switch</td>
</tr>
<tr>
<td>[Ht]</td>
<td>Motor thermostat switch</td>
</tr>
<tr>
<td>[PP]</td>
<td>Partial stroke passed</td>
</tr>
<tr>
<td>[PF]</td>
<td>Partial stroke failed</td>
</tr>
<tr>
<td>[n2]</td>
<td>Monitor 2</td>
</tr>
<tr>
<td>[OF]</td>
<td>Off</td>
</tr>
</tbody>
</table>

The r contact form can be set normally open [nO] or normally closed [nC].

Unless specified with order, the default setting for indication contact is the following:

r1 – [CL] Closed Limit [nO]

To change the function press the + or – key until the required setting is displayed.

PRESS THE + KEY.

The displayed function will flash indicating that it has been set.

To change the value press the + or – key until the required setting is displayed.

PRESS THE + KEY.

The displayed value will flash (stored) indicating that it has been set.
If function [Po] Position % Open, is selected and it is configured as a normally open contact it will make at the set value with the actuator moving in the open direction.

To change the form press the + or − key until the required setting is displayed.

[nO] Normally Open (Default):

[nC] Normally Closed:

PRESS THE + KEY.

The displayed option will flash (stored) indicating that it has been set.

This section includes selecting the remote control source for the actuator along with configuring the local controls, changing the colour of the closed LED, changing the display language and performing a full stroke reference test.

The correct setting for remote control source will be determined by the type of remote control required and the option specified and fitted, if any.

There are five options available to configure the remote control source:

[RE] Digital (Default): Select this option for hard-wired pushbutton / relay contact control.

[AI] Analogue: Select this option if the actuator is remotely controlled by an external analogue signal in the range 0-20 mA or 0-10 Volts, with or without offset zero.

[OP] Option: Select this option if the actuator is fitted with one of the following Network cards:

- Pakscan
- Modbus
- Profibus
- Foundation Fieldbus
- DeviceNet

[OE] Option ESD: Select this option if the actuator is fitted with one of the Network cards listed above and a hardwired ESD override facility is also required.

[OF] Off: Select this option to disable control from a remote source. The actuator will operate from the local controls only.

To change the configuration press the + or − key until the required setting is displayed.

PRESS THE + KEY.

The displayed option will flash (stored) indicating that it has been set.
There are two options available to configure the operation of the local controls:

[Pr] Push to Run (Default): Select this option if the actuator is required to stop when the knob is released.

[nn] Maintain: Select this option if the actuator is required to run to either the open or closed limit when the knob is released.

To change the configuration press the + or − key until the required setting is displayed.

PRESS THE ± KEY.

The displayed option will flash (stored) indicating that it has been set.

There are two options available to configure the operation of the local controls:

[Pr] Push to Run (Default): Select this option if the actuator is required to stop when the knob is released.

[nn] Maintain: Select this option if the actuator is required to run to either the open or closed limit when the knob is released.

To change the configuration press the + or − key until the required setting is displayed.

PRESS THE ± KEY.

The displayed option will flash (stored) indicating that it has been set.

It is possible to use an external power supply such as a solar power system for 24 VDC actuators. If this is the case then it is beneficial to limit power consumption while the actuator is at rest.

There are three options available to configure the power consumption:

[Off] Off (Default): Select this option to turn the display backlight on permanently.

[On] On: Select this option to automatically switch the display backlight off. This will be done 5 minutes after the actuator was last used with either the setting tool or local controls.

[EL] Extra: Select this option to further reduce the power consumption by inverting the monitor relay and disabling the CPT output.

To change the configuration press the + or − key until the required setting is displayed.

PRESS THE ± KEY.

The displayed option will flash (stored) indicating that it has been set.

There are two options available:

[gr] Green (Default): Select this option for the LED to be green at the closed limit and red at the open limit.

[re] Red: Select this option for the LED to be red at the closed limit and green at the open limit.

To change the configuration press the + or − key until the required setting is displayed.

PRESS THE ± KEY.

The displayed option will flash (stored) indicating that it has been set.
The default display text language is English. Consult the factory for which additional display text languages are available.

To change the language press the + or - key until the required setting is displayed.

PRESS THE ➔ KEY.

The displayed option will flash (stored) indicating that it has been set.

Full Stroke Setup (Reference Test)

This function performs a full cycle of the actuator and records the position and internal hydraulic pressure against time in both the open and closed directions. This should be carried out once the actuator has been commissioned on site. Using Insight II it can then be compared against subsequent tests carried out at a later date.

The actuator needs to be positioned at a limit to perform this test.

[SF] Perform the full stroke reference test.

PRESS THE ➔ KEY.

F-Stroke Setup

This brings up an option to either cancel or confirm that the reference partial stroke test should be completed.

To cancel the test: Ensure that [No] is displayed on the screen

PRESS THE ➔ KEY.

To confirm that the test should be completed: Press the + key until the display changes to [yS].

PRESS THE ➔ KEY.

Digital Control

This section includes selecting the action for 2-wire priority and settings related to how the actuator should hold its current position.
The default setting for 2-wire remote priority is [SP] Stay Put. If open and closed hard-wired signals are applied simultaneously the actuator will stay put (stop if running).

[SP] Stay Put (Default)

[CL] Close

[OP] Open

To change the priority press the + or - key until the required setting is displayed.

PRESS THE \(\text{uparrow} \) KEY.

The displayed option will flash (stored) indicating that it has been set.

[HP] Hold Position

The default setting is to maintain the current position (across the full stroke), until another command to move is given. This feature will compensate for any drift in position, in either direction by operating either the pump or solenoid valve(s).

[On] On (Default): This option will maintain the current position of the actuator.

[OF] Off: This option will allow the position of the actuator to drift.

To change this preference press the + or - key until the required setting is displayed.

PRESS THE \(\text{uparrow} \) KEY.

The displayed option will flash (stored) indicating that it has been set.

[PH] Position Hysteresis

This feature works in conjunction with [HP] Hold Position and sets the amount of movement that is permitted before the actuator should automatically reposition itself.

The default value is 0.5% [05].

The minimum settable value is 0.1% and the maximum settable value is 9.9%.

To change this value press the + or - keys to increase or decrease the set value.

When the desired value is on the display PRESS THE \(\text{downarrow} \) KEY.

The displayed value will flash indicating that it has been set.

[OH] Over Pressure Hysteresis

This feature will vent the internal hydraulic pressure in the actuator if it reaches a set defined value while the actuator is at position limit, for example due to thermal expansion.

The default value is 10% above the value set in [CP] Close Pressure (Limit) and [OP] Open Pressure (Limit).

The minimum settable value is 1% and the maximum settable value is 99%.

To change this value press the + or - keys to increase or decrease the set value.

PRESS THE \(\text{downarrow} \) KEY.

The displayed value will flash indicating that it has been set.
The EH actuators have two separate ESD circuits, a software driven circuit and hardware driven circuit.

The software ESD function has three settings in this menu that can be adjusted: [EA] Software ESD Action, [EO] ESD Local Stop Override and [EC] ESD Contact Type.

The hardware ESD circuit does not rely on the software to initiate an active ESD signal (although the software does monitor the ESD line).

For normal operation, there must be an ESD signal present on the actuator. Once the ESD signal is removed all power to the solenoid valves will also be removed instantaneously regardless of any other command or setting.

There is a physical link on the Power PCB, which is used to switch between the two. By default the actuator will be supplied set for software ESD control unless ordered for hardware ESD. Consult the factory for changing this link.

An active ESD signal applied to the actuator will override any existing or applied local or remote control signal.

Press the + or − key to select the required ESD action:

- [E] De-Energise (Default): This option will de-energise all the solenoid valves.
- [C] Close: This option will perform a Close command.
- [O] Open: This option will perform a Open command.
- [IP] Stay Put: This option will perform a Stop command.

To change the ESD action press the + or − key until the required setting is displayed.

Press the + or − key.

The displayed option will flash (stored) indicating that it has been set.
ESD Override Local Stop

The feature allows you to choose if an active ESD signal should override Local Stop.

[OF] No (Default): Select this option if a software ESD command should NOT override Local Stop.

[On] Yes: Select this option if a software ESD command should override Local Stop.

To change the setting press the + or − key until the required setting is displayed.

PRESS THE + KEY.

The displayed option will flash (stored) indicating that it has been set.

ESD Contact Type

This setting determines if a signal should be applied, or removed to initiate the software ESD action.

[nO] Normally Open (Default): The ESD signal has to be applied to perform software ESD function.

[nC] Normally Closed: The ESD signal has to be removed to perform software ESD function.

To change the ESD Contact press the + or − key until the required setting is displayed.

PRESS THE + KEY.

The displayed option will flash (stored) indicating that it has been set.

ESD Manual Reset

This feature allows the actuator to be disabled from operational commands after an ESD event until it has been manually reset. To perform a manual reset the red local controls knob has to be moved to Stop and then to either Local or Remote. Once this is done the actuator can be commanded to move again.

This works in both Hardware and Software ESD.

[OF] No Reset (Default): Select this option if the actuator does not need to be reset after a ESD event or loss of mains power.

[Ed] After ESD: Select this option if the actuator must be manually reset after an ESD event.

[LP] After Mains Loss: Select this option if the actuator must be manually reset after loss of mains power.

To change the Manual Reset option press the + or − key until the required setting is displayed.

PRESS THE + KEY.

The displayed option will flash (stored) indicating that it has been set.

ESD Override

The feature allows you to choose if an active ESD signal should override Local Stop.

[OF] No (Default): Select this option if a software ESD command should NOT override Local Stop.

[On] Yes: Select this option if a software ESD command should override Local Stop.

To change the setting press the + or − key until the required setting is displayed.

PRESS THE + KEY.

The displayed option will flash (stored) indicating that it has been set.
Temporary Loss of ESD Signal

This feature determines what action should be taken if the ESD signal is lost temporarily (for a time period less than that needed for the ESD action to be completed).

This works in both Hardware and Software ESD.

Sr Stop - Return (Default): This option will stop the actuator once the ESD signal is inactive and the actuator will then operate again if a command to move is present.

Sn Stop - Wait: This option will stop the actuator once the ESD signal is inactive and the actuator will wait until a new command is given.

Ct Continue ESD: This option will allow the actuator to continue with the ESD function once the ESD signal is inactive.

These settings will work in conjunction with the ESD Manual Reset [rE] option.

To change the action to be carried out press the + or − key until the required setting is displayed.

**PRESS THE ** key.

The displayed option will flash (stored) indicating that it has been set.

Partial Stroke Position

This sets the position that the actuator should move to when commanded to perform a partial stroke test.

The default value is 90% open.

The minimum settable value is 1% and the maximum settable value is 99%.

The partial stroke command will use the analogue input deadband [dC] & [dO] and hysteresis values [HC] & [HO] to position the actuator correctly.

To change this value press the + or − key until the required setting is displayed.

**PRESS THE ** key.

The displayed option will flash (stored) indicating that it has been set.
Partial Stroke Setup (Reference Test)

This function performs a partial stroke of the actuator and records the position and internal hydraulic pressure against time in both the open and closed directions. This should be carried out once the actuator has been commissioned on site. Using Insight II it can then be compared against subsequent tests carried out at a later date.

The actuator needs to be moved to the limit that the partial stroke test should be started from prior to initiating the test.

[SP] Perform the reference partial stroke test.

This brings up an option to either cancel or confirm that the reference partial stroke test should be completed.

To cancel the test: Ensure that [No] is displayed on the screen

PRESS THE KEY.

To confirm that the test should be completed: Press the + key until the display changes to [Ys]

PRESS THE KEY.
The analogue input signal can either be set as current (0-20 mA) or voltage (0-10 VDC).

[C] Current (Default): This option will allow the actuator to be controlled by a varying current signal.

[U] Voltage: This option will allow the actuator to be controlled by a varying voltage signal.

To change this value press the + or - key until the required setting is displayed.

Apply the analogue Close demand current or voltage signal corresponding to the Close position to calibrate this setting.

In the example below [08] = 8% of full scale Demand. Any value can be set, either high or low.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

Apply the analogue Open demand current or voltage signal corresponding to the Open position to calibrate this setting.

In the example below [43] = 43% of full scale Demand. Any value can be set, either high or low.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.
The CPT output can be set to either represent the position or internal hydraulic pressure as a current (4 - 20 mA) output.

To change the type of output press the + or – key until the required setting is displayed.

[Po] Position (Default): The CPT will output the actuators current position.

[Pr] Pressure: The CPT will output the actuators current internal hydraulic pressure.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

To calibrate the CPT output for the closed limit position, connect a current measuring device to the CPT terminals. Press the + or – keys until the required output is shown on the measuring device.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

To calibrate the CPT output for the open limit position, connect a current measuring device to the CPT terminals. Press the + or – keys until the required output is shown on the measuring device.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.
Analogue Signal Failure Action

This sets the action to be taken upon loss of the analogue signal. The set action will be taken once the demand signal falls below half the minimum value calibrated. For example, action will be taken if the signal falls below 2 mA if the lowest calibrated value is 4 mA.

[OF] Alarm Off (Default): This option will move the actuator to the low demand signal position.

[A] Alarm On: This option will trip the fault relay and move the actuator to the low demand signal position.

[AE] Alarm and SW ESD: This option will trip the fault relay plus the actuator will carry out the Software ESD action.

To change this function press the + or - key until the required setting is displayed.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

Analogue Control 2

Selectable Deadband and Hysteresis values (independent in both directions to optimise for different operating speeds), are used to compensate for momentum and solenoid valve response time. Proper calibration provides accurate positioning; preventing the actuator from “hunting” and reducing the number of motor/pump starts.

Initial Direction of Travel Demand Position

START STOP Actual STOP STOP START

Opening Opening Closing Closing

49.5% 49.7% 50% 50.3% 50.5%

Opening Hysteresis
49.9%

Opening Deadband

Closing Hysteresis

Closing Deadband

Deadband set to 5 = 0.5%

Hysteresis set to 2 = 0.2%

Some understanding of the operational design parameters is required to optimally set Deadband and Hysteresis.

If the actuator was at the closed limit and a demand position input of 50% was received, then, the controller will command it to move in the open direction until it reaches 49.7% (Demand – (Deadband-Hysteresis)).

Movement will not be commanded again until the measured position falls outside of the Deadband either side of the demand position. If the Deadband was smaller, it would be possible for the actual stopped position to have fallen the other side of the Deadband and as such the actuator would be commanded to move in the opposite direction in order to meet the demand. This would result in “hunting” as the actuator oscillated around the Demand point.

By increasing the Deadband but also increasing the amount of hysteresis, the actual demand position can be met without “hunting” occurring.

Momentum/Solenoid response times within the system may cause the actuator to continue moving after the stop command has been issued as shown by the “Actual Stopped Position” at 49.9%.
The closing Deadband value is displayed as a % of full stroke. The default value is 1%.
The minimum settable value is 0.1% and the maximum settable value is 9.9% in 0.1% increments.
To change this value press the + or - key until the required setting is displayed.

**PRESS THE ** key.
The displayed option will flash (stored) indicating that it has been set.

The opening Deadband value is displayed as a % of full stroke. The default value is 1%.
The minimum settable value is 0.1% and the maximum settable value is 9.9% in 0.1% increments.
To change this value press the + or - key until the required setting is displayed.

**PRESS THE ** key.
The displayed option will flash (stored) indicating that it has been set.

The closing hysteresis value is displayed as a % of full stroke. The default value is 0.5%.
The minimum settable value is 0.1% and the maximum settable value is 9.9% in 0.1% increments.
To change this value press the + or - key until the required setting is displayed.

**PRESS THE ** key.
The displayed option will flash (stored) indicating that it has been set.

The opening hysteresis value is displayed as a % of full stroke. The default value is 0.5%.
The minimum settable value is 0.1% and the maximum settable value is 9.9% in 0.1% increments.
To change this value press the + or - key until the required setting is displayed.

**PRESS THE ** key.
The displayed option will flash (stored) indicating that it has been set.
The interrupter timer enables pulsed “stop/start” operation by the actuator as a response to local and remote control commands.

This effectively increases the valve stroke time and can be adjusted to prevent hydraulic shock (water hammer) and flow surges in pipelines. This is effective for spring-return and double-acting units without accumulators to slow stroke time(s).

When enabled, the interrupter timer operates in both local and remote control.

To enable theInterrupter Timer press the $+$ or $-$ keys to toggle between [OF] and [On].

PRESS THE \leftarrow KEY.

The displayed option will flash (stored) indicating that it has been set.

When the timer option is enabled an additional series of settings can be accessed by pressing the \Rightarrow key.

NOTE: If the timer option is not available pressing the \Rightarrow key will not access setting.

Press the \Rightarrow key to display interrupter timer set-up screens.

The default for timer direction is [CL], timer operation will start in closing and stop in opening – pulsing operation around the close position.

If pulsing operation is required to stop in closing and start in opening – around the open position, use the $+$ or $-$ key.

The display will change to [OP] Opening.

PRESS THE \Rightarrow KEY.

The displayed option will flash (stored) indicating that it has been set.

NOTE: Instructions [JC] and [JO] are for timer operation around the Closed position. For timing around the Open position, read stop for start [JC] and start for stop [JO].

Using the $+$ or $-$ key select the position for the TIMER TO START WHEN THE VALVE IS CLOSING.

[CL] Closed

[00] to [99] = percentage open

[OPEN] Open = valve open

NOTE: If the timing is not required in the closing stroke select [JC] to [CL] valve closed position.
Using the + or - key select the position for the TIMER TO STOP WHEN THE VALVE IS OPENING.

[] Closed = valve closed
[00] to [99] = percentage open
[] Open = valve open

PRESS THE ↪ KEY.

The displayed option will flash (stored) indicating that it has been set.

If timing is not required in the opening stroke select [JO] to [J].

Interrupter Timer Interval

This function changes the units of time applied to [Jn] and [JF] between seconds and milliseconds.

[On] Seconds (Default)
[OF] Milliseconds

To change the time interval press the + or - key until the required setting is displayed.

PRESS THE ↪ KEY.

The displayed option will flash (stored) indicating that it has been set.

Interrupter Timer On Time

Using the + or - key select the actuator run period in the range 100 mS to 99 seconds.

Interrupter Timer Off Time

Using the + or - key select the actuator stop period in the range 100 mS to 99 seconds.

Timer Stop Position: 25%

Timer On Time

05 Seconds

Timer Off Time

25 Seconds

This function changes the units of time applied to [Jn] and [JF] between seconds and milliseconds.

[On] Seconds (Default)
[OF] Milliseconds

To change the time interval press the + or - key until the required setting is displayed.

PRESS THE ↪ KEY.

The displayed option will flash (stored) indicating that it has been set.
An actuator fitted with the interrupter timer and set as the example shown in these instructions would operate at:

Rated speed from full Open to 25% Open.

$\frac{1}{6}$ rated speed from 25% Open to Fully Closed and from Fully Closed to 25% Open.

Rated speed from 25% Open to Fully Open.

WARNING: The interrupter timer does not operate during mains power failure on spring return actuators. Systems should take this into account.

Example

An actuator fitted with the interrupter timer and set as the example shown in these instructions would operate at:

Rated speed from full Open to 25% Open.

$\frac{1}{6}$ rated speed from 25% Open to Fully Closed and from Fully Closed to 25% Open.

Rated speed from 25% Open to Fully Open.

The displayed option will flash (stored) indicating that it has been set.
This section allows the user to confirm a fault if allowed along with checking that the display is operating correctly. The firmware version programmed onto the various electronic boards can also be viewed here.

See section 3 for full description of fault descriptions.

The table (right) lists the available fault descriptions along with the state of the associated Monitor Relay and Fault Relay. If there is more than one fault then they will be displayed in three second intervals. After the first fault has been confirmed then the next highest priority fault can then be confirmed if allowed.

Although acceptance of the fault may permit the control of the actuator, it is probable that the fault is still present and should be investigated. A full functional test should be carried out to ensure any underlying fault does not affect the actuator performance. If the fault persists then contact Rotork.

<table>
<thead>
<tr>
<th>Displayed text</th>
<th>Clear monitor relay</th>
<th>Set fault relay</th>
<th>CF Clears fault</th>
<th>Cleared automatically</th>
<th>Resume on new command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG ERROR</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ELECTRONIC FAULT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LOCAL CTRL FAULT</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SOL DRIVE FAULT</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>POS SENSOR FAULT</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PRES SENSE FAULT</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>OP IN MID POS</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes (move away first)</td>
</tr>
<tr>
<td>OP AT LIMIT</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes (move away first)</td>
</tr>
<tr>
<td>WRONG DIRECTION</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>STALL IN MID POS</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (move away first)</td>
</tr>
<tr>
<td>STALL AT LIMIT</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (move away first)</td>
</tr>
<tr>
<td>PS ERROR</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DEMAND FAULT</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PS UNABLE TO RUN</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OPTION CH 1 FAULT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>OPTION CH 2 FAULT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>EEPROM MISSING</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
This option illuminates all the segments, dots and icons on the display along with cycling through the Red, Yellow and Green LED’s.

This option displays the current firmware version number that is installed on the actuator.

This option displays the current firmware version number that is installed on Channel 1 of the network card if fitted.

This option displays the current firmware version number that is installed on Channel 2 of the network card if fitted.
Setting instructions for actuators including an optional Pakscan Field Control Unit – check wiring diagram for inclusion.

Before setting the parameters for Option Pakscan ensure Remote Control Source [Od] has been selected to [OP] or [OE] in Section 9.3.

The actuator Pakscan Field Control Unit must be allocated a unique loop node address.

The actuator must be in “Loopback” and isolated from Pakscan loop traffic for its address to be set or changed. Loopback can be achieved in two ways:
1. Turn OFF the master station.
2. Isolate the actuator from the 2-wire control loop both in & out.

Using the + or – keys display the required loop address.
Address to be set within the range 01-240 (01–F0 Hexadecimal). Refer to table in section 12.

The displayed option will flash (stored) indicating that it has been set.
Press the ➡️ key to display:

- **PA Pakscan Node Address**
 - Node Address
 - Hex 01 → Dec 001

Pb Pakscan Baud Rate

The actuator Pakscan Field Control Unit baud rate must be set to the loop baud rate. For a Pakscan 2-wire control loop the selected baud rate must be common to the master station and all the field control units included in the loop.

The actuator must be in “Loopback” and isolated from Pakscan loop traffic for its baud rate to be set or changed. Loopback can be achieved in two ways:
1. Turn OFF the master station.
2. Isolate the actuator from the 2-wire control loop both in & out.

Using the + or – keys display the required baud rate.
- [01] = 110 baud
- [03] = 300 baud
- [06] = 600 baud
- [12] = 1200 baud
- [24] = 2400 baud

The displayed option will flash (stored) indicating that it has been set.
Press the ➡️ key to display:

- **[Pb] Baud Rate**
The EH actuator has the facility to accept 4 auxiliary inputs (AUX1–AUX4). These are used when supplementary remote control or digital auxiliary inputs are required in addition to the standard control and feedback features incorporated into the Pakscan card. It is also possible to have a combination of both remote control and volt-free inputs to provide, for example, open and close control as well as a high and low tank level alarm indication, supplied via an external transducer.

The hexadecimal number displayed under PF can be considered as a “software mask”. It is this mask that tells the Pakscan card what type of input to expect, control or input signal, and what form the input will be, normally open or normally closed (refer to section 12 for Binary, Hexadecimal and Decimal Conversion Table).

To decipher the mask the number needs to be split into two separate hexadecimal characters, each of which can be sub-divided into 4 binary bits. The first 4 bits represent the function and the second 4 represent the input source (known as invert). Pictorially this can be represented as:

<table>
<thead>
<tr>
<th>Left side hex character</th>
<th>Right side hex character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux 4 to 1 (function)</td>
<td>AUX 4 to 1 (Invert)</td>
</tr>
<tr>
<td>Bits 4 3 2 1</td>
<td>4 3 2 1</td>
</tr>
</tbody>
</table>

When used for remote control of the actuator bits 4 to 1 of the function character have been designated as follows:

- **Bit 4** (AUX4) – ESD
- **Bit 3** (AUX3) – Stop (Maintain)
- **Bit 2** (AUX2) – Close
- **Bit 1** (AUX1) – Open

(When used for digital signal inputs they are simply designated as AUX 4 to AUX 1)

Rules

1. **Function bit set to “0”**
 - Any function bit set to “0” indicates that the particular aux input is to be treated as a digital signal for field status reporting, e.g. a level switch or motor running status.
 - If the corresponding invert bit is set to a “0”, an open contact is reported as a logic “1” and a closed contact is reported as a logic “0” (i.e. this will invert the input).
 - If the corresponding invert bit is set to a “1”, an open contact is reported as a logic “0” and a closed contact is reported as a logic “1” (i.e. this gives a noninverting input).

2. **Function bit set to “1”**
 - Any function bit set to “1” indicates that the particular aux input is to be treated as a digital command to operate the actuator.
 - When the corresponding invert bit is set to a “0” this represents an N.C. contact as being the command source, i.e. a closing contact de-energises the input and an opening contact energises the input.
 - When the corresponding invert bit is set to a “1”, this represents an N.O. contact as being the command source, i.e. a closing contact energises the input and an opening contact de-energises the input.

3. **ESD Control**
 - When using ESD (aux input 4), the ESD contact mode setting [A2] should be set to the default value of [O]. The [A1]-ESD direction setting should be set to either Open or Close the valve (refer to section 9.5).

4. **Stop (Maintain) Control**
 - When energised this will make the Aux input Open/Close/ESD control push-to-run, (non-maintained).
 - When de-energised, the Aux input Open/Close/ESD control will be maintained.
5. Remote I/P Setting
Ensure that the correct [Od] Control Type setting is selected (refer to section 9.3).

For Pakscan this is [oP] Network.
The factory default for [PF] Aux I/P Mask is [OF] 0000 1111.

Examples
1. The full range of remote controls is needed. Open and Close are NO and ESD and Stop/maintain is NC.
 Aux I/P 4 3 2 1
 Function 1 1 1 1 = F
 Invert 0 0 1 1 = 3 i.e. set [PF] to [F3]

2. Open and close control is required along with 2 inverted digital signal inputs (Note that with this setting the open and close commands will be maintained.)
 Aux I/P 4 3 2 1
 Function 0 0 1 1 = 3
 Invert 0 0 1 1 = 3 i.e. set [PF] to [33]

3. Only an ESD input is needed. The requirement is for push to run control with a NO contact input.
 Aux I/P 4 3 2 1
 Function 1 1 0 0 = C
 Invert 1 0 0 0 = 8 i.e. set [PF] to [C8]

Using the + or - keys display the required mask setting.

Auxiliary Input Mask [OF]
PRESS THE \(\text{O} \) KEY.
The displayed option will flash (stored) indicating that it has been set.

For Pakscan module positioning settings [OF], refer to section 9.14.
If Pakscan positioning control is required, PRESS THE \(\downarrow \) KEY.
Display [FL] Low Set Point Position
Refer to section 9.14.
Setting instructions for actuators including an optional Modbus RTU module – check wiring diagram for inclusion.

Before setting the parameters for Option Modbus ensure Remote Control Source [Od] has been selected to [Op] in Section 9.3.

⚠️ The actuator power must be cycled for the changes to take effect.

9.11 Bus System
Option Modbus [Op]

The Modbus module must be allocated a unique address.

To set the address the Modbus module must be isolated from the host by disconnecting the RS485 highway or turning off the host device.

Using the + or - keys display the required address.

Address to be set within the range (01-247 to F7 Hexadecimal). If an address value outside this range is entered, the address set will revert to 01 (for 00) or F7 (for value above F7).

Press the 🔴 key.

The displayed option will flash (stored) indicating that it has been set.

Press the ➡️ key to display: [Pb] Baud Rate.

PA Modbus Node Address

Node Address

Hex 01 : Dec 001

Pb Modbus Baudrate

The Modbus module must be set to the RS485 highway baudrate. To set the baudrate the Modbus module must be isolated from the host by disconnecting the RS485 highway or turning off the host device.

Using the + or - keys display the required baudrate:

- [01] = 110
- [03] = 300
- [12] = 1200
- [48] = 4800
- [19] = 19200
- [57] = 57600
- [06] = 600
- [24] = 2400
- [96] = 9600
- [38] = 38400

Press the 🔴 key.

The displayed option will flash (stored) indicating that it has been set.

Press the ➡️ key to display: [PF] Aux I/P Mask.
The EH Pro actuator has the facility to accept 4 auxiliary inputs (AUX1 – AUX4). These are used when supplementary remote control or digital auxiliary inputs are required in addition to the standard control and feedback features incorporated into the Modbus module. It is also possible to have a combination of both remote control and volt-free inputs to provide, for example, open and close control as well as a high and low tank level alarm indication, supplied via an external transducer.

The hexadecimal number displayed under PF can be considered as a “software mask”. It is this mask that tells the Modbus module what type of input to expect, control or input signal, and what form the input will be, normally open or normally closed. Refer to section 12 for Binary, Hexadecimal and Decimal Conversion Table.

To decipher the mask the number needs to be split into two separate hexadecimal characters, each of which can be sub-divided into 4 binary bits. The first 4 bits represent the function and the second 4 represent the input source (known as invert). Pictorially this can be represented as:

<table>
<thead>
<tr>
<th>Left side hex character</th>
<th>Right side hex character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux 4 to 1 (function)</td>
<td>AUX 4 to 1 (Invert)</td>
</tr>
<tr>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>4 3 2 1</td>
<td>4 3 2 1</td>
</tr>
</tbody>
</table>

When used for remote control of the actuator bits 4 to 1 of the function character have been designated as follows:

- **Bit 4 (AUX4)** – ESD
- **Bit 3 (AUX3)** – Stop (Maintain)
- **Bit 2 (AUX2)** – Close
- **Bit 1 (AUX1)** – Open

(When used for digital signal inputs they are simply designated as AUX 4 to AUX 1.)

Rules

1. **Function bit set to “0”**
 Any function bit set to “0” indicates that the particular aux input is to be treated as a digital signal for field status reporting, e.g. a level switch or motor running status.

 - If the corresponding invert bit is set to a “0”, an open contact is reported as a logic “1” and a closed contact is reported as a logic “0” (i.e. this will invert the input).

 - If the corresponding invert bit is set to a “1”, an open contact is reported as a logic “0” and a closed contact is reported as a logic “1” (i.e. this gives a noninverting input).

2. **Function bit set to “1”**
 Any function bit set to “1” indicates that the particular aux input is to be treated as a digital command to operate the actuator.

 - When the corresponding invert bit is set to a “0” this represents an N.C. contact as being the command source, i.e. a closing contact de-energises the input and an opening contact energises the input.

 - When the corresponding invert bit is set to a “1”, this represents an N.O. contact as being the command source, i.e. a closing contact energises the input and an opening contact de-energises the input.

3. **ESD Control**
 When using ESD (aux input 4), the ESD contact mode setting [A2] should be set to the default value of [NO]. The [A1]–ESD direction setting should be set to either Open or Close the valve. Refer to section 9.5.

4. **Stop (Maintain) Control**
 When energised this will make the Aux input Open/Close control push-to-run. When de-energised, the Aux input Open/Close control will be maintained. ESD is always push to run (non maintained).
5. Remote I/P Setting

Ensure that the correct [Od] Control Type setting is selected (refer to section 9.3).

For Modbus this is [OP] Network.

The factory default for [PF] Aux I/P Mask is [OF] 0000 1111.

Examples

1. The full range of remote controls is needed. Open and Close are NO and ESD and Stop/maintain is NC.

 Aux I/P 4 3 2 1
 Function 1 1 1 1 = F
 Invert 0 0 1 1 = 3 i.e. set [PF] to [F3]

2. Open and close control is required along with 2 inverted digital signal inputs. (Note that with this setting the open and close commands will be maintained.)

 Aux I/P 4 3 2 1
 Function 0 0 1 1 = 3
 Invert 0 0 1 1 = 3 i.e. set [PF] to [33]

3. Only an ESD input is needed. The requirement is for push to run control with a NO contact input.

 Aux I/P 4 3 2 1
 Function 1 1 0 0 = C
 Invert 1 0 0 0 = 8 i.e. set [PF] to [C8]

Using the + or – keys display the required mask setting.

Using the + or – keys display the required parity bit:

[No] None (no) parity bit
[En] Even parity bit
[Od] Odd parity bit

PRESS THE ← KEY.

The displayed option will flash (stored) indicating that it has been set.

Press the → key to display:

PRESS THE ↓ KEY.

The displayed option will flash (stored) indicating that it has been set.

For Modbus module positioning settings and action on loss of signal setting [OF] (refer to section 9.14).

If Modbus positioning control and action on loss of communication are required, PRESS THE ↓ KEY.

Display [FL] Low Set Point Position
Refer to section 9.14.
Setting instructions for actuators including an optional Profibus DP module – check wiring diagram for inclusion.

Before setting the parameters for Option Profibus ensure Remote Control Source [Od] has been selected to [oP] in Section 9.3.

⚠️ Any settings made locally at the actuator may be overwritten by the host on startup unless the GSD files are locked on the Profibus card. Refer to publication PUB088-004 available from www.rotork.com

⚠️ The actuator power must be cycled for the changes to take effect.

The Profibus DP module must be allocated a unique address.
To set the address the Profibus module must be isolated from the host by disconnecting the RS485 highway or turning off the host device.

Using the + or − keys display the required address.
Address to be set within the range (01-126 to 7E Hexadecimal) (refer to section 12 conversion). If an address value outside this range is entered, the address set will revert to 01 (for 00) or 7E (for value above 7E).

PRESS THE → KEY.
The displayed option will flash (stored) indicating that it has been set.

Press the → to display:
[Pb] Baud Rate.

⚠️ [Pb] has no relevance for the Rotork Profibus DP Mk.2 card.

Therefore, if the Rotork Profibus DP Mk.2 card is fitted, press the → to display:
[PF] Aux I/P Mask.
The EH Pro actuator has the facility to accept 4 auxiliary inputs (AUX1–AUX4). These are used when supplementary remote control or digital auxiliary inputs are required in addition to the standard control and feedback features incorporated into the Profibus module. It is also possible to have a combination of both remote control and volt-free inputs to provide, for example, open and close control as well as a high and low tank level alarm indication, supplied via an external transducer.

The hexadecimal number displayed under PF can be considered as a “software mask”. It is this mask that tells the Profibus module what type of input to expect, control or input signal, and what form the input will be, normally open or normally closed (refer to section 12 for Binary, Hexadecimal and Decimal Conversion Table).

To decipher the mask the number needs to be split into two separate hexadecimal characters, each of which can be sub-divided into 4 binary bits. The first 4 bits represent the function and the second 4 represent the input source (known as invert). Pictorially this can be represented as:

<table>
<thead>
<tr>
<th>Left side hex character</th>
<th>Right side hex character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux 4 to 1 (function)</td>
<td>AUX 4 to 1 (Invert)</td>
</tr>
</tbody>
</table>

Bits

When used for remote control of the actuator bits 4 to 1 of the function character have been designated as follows:

- **Bit 4** (AUX4) – ESD
- **Bit 3** (AUX3) – Stop (Maintain)
- **Bit 2** (AUX2) – Close
- **Bit 1** (AUX1) – Open

When used for digital signal inputs they are simply designated as AUX 4 to AUX 1.

Rules

1. **Function bit set to “0”**
 Any function bit set to “0” indicates that the particular aux input is to be treated as a digital signal for field status reporting, e.g. a level switch or motor running status.

 If the corresponding invert bit is set to a “0”, an open contact is reported as a logic “1” and a closed contact is reported as a logic “0” (i.e. this will invert the input).

 If the corresponding invert bit is set to a “1”, an open contact is reported as a logic “0” and a closed contact is reported as a logic “1” (i.e. this gives a noninverting input).

2. **Function bit set to “1”**
 Any function bit set to “1” indicates that the particular aux input is to be treated as a digital command to operate the actuator.

 When the corresponding invert bit is set to a “0” this represents an N.C. contact as being the command source, i.e. a closing contact de-energises the input and an opening contact energises the input.

 When the corresponding invert bit is set to a “1”, this represents an N.O. contact as being the command source, i.e. a closing contact energises the input and an opening contact de-energises the input.

3. **ESD Control**
 When using ESD (aux input 4), the ESD contact mode setting [A2] should be set to the default value of [NO]. The [A1]–ESD direction setting should be set to either open or close the valve (refer to section 9.5).

4. **Stop/Maintain Control**
 When energised this will make the Aux input Open/Close control push to run. When de-energised, the Aux input Open/Close control will be maintained. ESD is always push to run (non maintained).
5. Remote Source Setting [Od]
Ensure that the correct [Od] Control Type setting is selected (refer to section 9.3).

For Profibus this is [OP] Network.
The factory default for [PF] Aux I/P Mask is [OF] 0000 1111.

Examples
1. The full range of remote controls is needed. Open and Close are NO and ESD and Stop/maintain is NC.

Aux I/P 4 3 2 1
Function 1 1 1 1 = F
Invert 0 0 1 1 = 3 i.e. set [PF] to [F3]

2. Open and close control is required along with 2 inverted digital signal inputs. (Note that with this setting the open and close commands will be maintained.)

Aux I/P 4 3 2 1
Function 0 0 1 1 = 3
Invert 0 0 1 1 = 3 i.e. set [PF] to [33]

3. Only an ESD input is needed. The requirement is for push to run control with a NO contact input.

Aux I/P 4 3 2 1
Function 1 1 0 0 = C
Invert 1 0 0 0 = 8 i.e. set [PF] to [C8]
Setting instructions for actuators including an optional DeviceNet DFU module – check wiring diagram for inclusion.

Before setting the parameters for Option DeviceNet ensure Remote Control Source [Od] has been selected to [OP] in section 9.3.

⚠️ The actuator power must be cycled for the changes to take effect.

9.13 Bus System Option DeviceNet

PA DeviceNet Node Address

The DeviceNet module must be allocated a unique address.

Using the + or - keys display the required address.

Address to be set within the range (01-63 to 3F Hexadecimal). See page 79 for conversion. If an address value outside this range is entered, the address set will revert to 01 (for 00) or 3F (for value above 3F).

Press the **KEY**.

The displayed option will flash (stored) indicating that it has been set.

Press the → key to display: [*Pb*] Baud Rate.

Pb DeviceNet Baudrate

The DeviceNet module must be set to the DeviceNet highway baudrate.

Using the + or - keys display the required baudrate:

- [01] = 125 k baud
- [03] = 250 k baud
- [06] = 500 k baud

Press the **KEY**.

The displayed option will flash (stored) indicating that it has been set.

Press the → key to display: [*PF*] Aux I/P Mask.
The EH Pro actuator has the facility to accept 4 auxiliary inputs (AUX1–AUX4). These are used when supplementary remote control or volt free digital auxiliary inputs are required in addition to the standard control and feedback features incorporated into the DeviceNet module. It is also possible to have a combination of both remote control and volt free inputs to provide, for example, open and close control as well as a high and low tank level alarm indication, supplied via an external transducer.

The hexadecimal number displayed under PF can be considered as a "software mask". It is this mask that tells the DeviceNet module what type of input to expect, control or input signal, and what form the input will be, normally open or normally closed.

To decipher the mask the number needs to be split into two separate hexadecimal characters, each of which can be sub-divided into 4 binary bits. The first 4 bits represent the function and the second 4 represent the input source (known as invert). Pictorially this can be represented as:

<table>
<thead>
<tr>
<th>Left side hex character</th>
<th>Right side hex character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux 4 to 1 (function)</td>
<td>AUX 4 to 1 (Invert)</td>
</tr>
<tr>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>4 3 2 1</td>
<td>4 3 2 1</td>
</tr>
</tbody>
</table>

When used for remote control of the actuator bits 4 to 1 of the function character have been designated as follows:

- **Bit 4 (AUX4)** – ESD
- **Bit 3 (AUX3)** – Stop (Maintain)
- **Bit 2 (AUX2)** – Close
- **Bit 1 (AUX1)** – Open

(When used for digital signal inputs they are simply designated as AUX 4 to AUX 1.)

Rules

1. **Function bit set to “0”**

Any function bit set to “0” indicates that the particular aux input is to be treated as a digital signal for field status reporting, e.g. a level switch or motor running status. If the corresponding invert bit is set to a “0”, an open contact is reported as a logic “1” and a close contact is reported as a logic “0” (i.e. this will invert the input).

If the corresponding invert bit is set to a “1”, an open contact is reported as a logic “0” and a close contact is reported as a logic “1” (i.e. this gives a non-inverting input).

2. **Function bit set to “1”**

Any function bit set to “1” indicates that the particular aux input is to be treated as a digital command to operate the actuator.

When the corresponding invert bit is set to a ”0“ this represents an N.C. contact as being the command source, i.e. a closing contact de-energises the input and an opening contact energises the input.

When the corresponding invert bit is set to a ”1", this represents an N.O. contact as being the command source, i.e. a closing contact energises the input and an opening contact de-energises the input.

3. **ESD Control**

When using ESD (aux input 4), the ESD contact mode setting [A2] should be set to the default value of [NO]. The [A1] – ESD direction setting should be set to either open or close the valve (refer to section 9.5).

4. **Stop (Maintain) Control**

When energised this will make the Aux input Open/Close control push-to-run. When de-energised, the Aux input Open/Close control will be maintained. ESD is always push to run (non maintained).
5. Remote I/P Setting

Ensure that the correct [Od] Control Type setting is selected (refer to section 9.3). For DeviceNet this is [OP] Network.

The factory default for [PF] Aux I/P Mask is [OF] 0000 1111.

Examples

1. The full range of remote controls is needed. Open and Close are NO and ESD and Stop/maintain is NC.

 Aux I/P 4 3 2 1
 Function 1 1 1 1 = F
 Invert 0 0 1 1 = 3 i.e. set [PF] to [F3]

2. Open and close control is required along with 2 inverted digital signal inputs. (Note that with this setting the open and close commands will be maintained.)

 Aux I/P 4 3 2 1
 Function 0 0 1 1 = 3
 Invert 0 0 1 1 = 3 i.e. set [PF] to [33]

3. Only an ESD input is needed. The requirement is for push to run control with a NO contact input.

 Aux I/P 4 3 2 1
 Function 1 1 0 0 = C
 Invert 1 0 0 0 = 8 i.e. set [PF] to [C8]

Using the + or − keys display the required mask setting.

PRESS THE → KEY.

The displayed option will flash (stored) indicating that it has been set.

For DeviceNet module positioning settings and action on loss of signal setting [OF]. Refer to section 9.14.
9.14 Bus System Positioning Control Settings

If the system control strategy for Pakscan, Modbus, DeviceNet or Profinet requires intermediate valve travel positioning to a "DV" (Desired Value - value corresponding to required position), the control parameters in this section need to be set. "Action on Loss of Signal" parameters apply only to Modbus and Profinet systems.

Limited Range Positioning is a selectable option whereby positioning limits, 0% and 100%, can be at different positions to those used for digital Closed and Open limit commands. Limited range positioning can be set using the [FL] Low Set Point Position and [FH] High Set Point Position screens.

It should be noted that the actuator will respond to a digital Open or Close host command by moving the valve to the set limits irrespective of settings made for positioning control.

Settings for Deadband and Motion Inhibit Time affect accuracy and response time.

⚠️ Any settings made locally at the actuator may be overwritten by the host on startup unless the GSD files are locked on the Profinet card. Refer to publication PUB088-004-00 available from www.rotork.com
MIT sets the minimum time between successive position commands being actioned. It is used in situations to reduce the number of starts per hour and to smooth out fluctuations if continuous positioning is implemented.

Setting the longest possible time while maintaining acceptable control will maximise the life of the motorised valve.

Use the + or - key to display the required setting:

[00] to [99] = 0 to 99 seconds.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

Press the ➡️ key to display:

[FA] Loss of Signal (Modbus, Profibus & DeviceNet only).

FA

Modbus, Profibus & DeviceNet Action on Loss of Signal

Modbus, Profibus & DeviceNet modules can be set to respond on loss of host communication by positioning the valve. Modbus checks for a loss of general highway communications whereas Profibus & DeviceNet check for a loss of communications addressed specifically to themselves.

The default setting is off [OF] and the default timeout is 255 sec.

Use the + or - key to display the required setting:

[ON] Failsafe as determined by setting [FF]

[OF] Go to Low SP position.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

Press the ➡️ key to display:

[FF] Failsafe Action

FF

Modbus, Profibus & DeviceNet Failsafe Action

Modbus, Profibus & DeviceNet failsafe action when [FA] is enabled.

Use the + or - key to display the required setting:

[Lo] Go to Low SP position.

[SP] Stay put

[Hi] Go to High SP position.

PRESS THE KEY.

The displayed option will flash (stored) indicating that it has been set.

Press the ➡️ key to display:

[FF] Failsafe Action
All EH actuator functions are configured to a set of Rotork Fluid Systems default (standard) settings before despatch, see the table opposite. When requested, alternative settings specified with the order will be used. When site commissioning takes place, entered settings overwrite Rotork Fluid Systems defaults and these “current” settings are used for operation along with the remaining unadjusted defaults.

Should difficulty be encountered during commissioning the default settings can be reinstated, returning the actuator configuration to its original manufactured state. Site commissioning must then begin again.

If reset to factory defaults takes place, all Basic and Configuration Settings except limit positions will return to their default setting. See the table opposite for Rotork Fluid Systems standard settings. Basic settings (except limits) and Configuration settings must then be checked and reset as required. Refer to Basic Settings, section 8 and Configuration Settings, section 9.

Rotork Fluid Systems standard default settings for EH actuators:

<table>
<thead>
<tr>
<th>Function</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>[P?] Password</td>
<td>Unaffected – will remain as set</td>
</tr>
<tr>
<td>[Bt] Bluetooth Communication</td>
<td>Switched Off</td>
</tr>
</tbody>
</table>

Basic Configurations

<table>
<thead>
<tr>
<th>Function</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C2] Close Action</td>
<td>Stop on Pressure</td>
</tr>
<tr>
<td>[C3] Open Action</td>
<td>Stop on Limit</td>
</tr>
<tr>
<td>[CP] Close Pressure at Limit</td>
<td>90% of Maximum Pressure</td>
</tr>
<tr>
<td>[Cp] Close Pressure at Mid</td>
<td>00% = Value set in CP</td>
</tr>
<tr>
<td>[OP] Open Pressure at Limit</td>
<td>90% of Maximum Pressure</td>
</tr>
<tr>
<td>[Op] Open Pressure at Mid</td>
<td>00% = Value set in OP</td>
</tr>
</tbody>
</table>

Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>[r1] Relay 1 Function</td>
<td>Closed Limit</td>
</tr>
<tr>
<td>[r1] Relay 1 Form</td>
<td>Normally Open</td>
</tr>
<tr>
<td>[Od] Remote Select</td>
<td>Digital</td>
</tr>
<tr>
<td>[CL] Local Control</td>
<td>Push to Run</td>
</tr>
<tr>
<td>[LP] Low Power Mode</td>
<td>Switched Off</td>
</tr>
<tr>
<td>[Ld] Closed LED Colour</td>
<td>Green</td>
</tr>
<tr>
<td>[UL] Language</td>
<td>English</td>
</tr>
<tr>
<td>[rP] Remote Priority</td>
<td>Stayput</td>
</tr>
<tr>
<td>[HP] Hold Position</td>
<td>Switched On</td>
</tr>
<tr>
<td>[PH] Position Hysteresis</td>
<td>0.5%</td>
</tr>
<tr>
<td>[OH] Over Pressure Hysteresis</td>
<td>10%</td>
</tr>
<tr>
<td>[UH] Under Pressure Hysteresis</td>
<td>10%</td>
</tr>
<tr>
<td>[EA] ESD Action (Software)</td>
<td>De-energise all Solenoid Valves</td>
</tr>
<tr>
<td>[EO] ESD Local Stop Override</td>
<td>No Override</td>
</tr>
<tr>
<td>[Ec] ESD Contact Type</td>
<td>Normally Open</td>
</tr>
<tr>
<td>[rE] ESD Manual Reset</td>
<td>No Reset</td>
</tr>
<tr>
<td>[Et] ESD Temp Loss of Signal</td>
<td>Continue with ESD Action</td>
</tr>
<tr>
<td>[PP] Partial Stroke Position</td>
<td>90% Open</td>
</tr>
<tr>
<td>[Ph] Partial Stroke Test – Motor Start</td>
<td>Do not start motor when test commences</td>
</tr>
<tr>
<td>[FI] mA / Voltage Analogue Input</td>
<td>Current</td>
</tr>
</tbody>
</table>
[FF] Analogue Signal Failure Action [OF] No Alarm
[dC] Closing Deadband Adjustment [10] 1.0%
[dO] Opening Deadband Adjustment [10] 1.0%
[HC] Closing Hysteresis Adjustment [05] 0.5%
[HO] Opening Hysteresis Adjustment [05] 0.5%
[OJ] Interrupter Timer Enable [OF] Timer Off
[Jd] Interrupter Timer Start Direction [CL] Start Closing
[JO] Interrupter Timer Open Position [25] 25% Open
[JS] Interrupter Timer Interval [OF] Time in Seconds
[JE] Interrupter Timer ESD Override [OF] No Override

Pressing opens a second menu
Confirm action?
[no] Cancels the requested action (Default)
[y5] Confirms the requested action
PRESS THE KEY.
10.1 Maintenance, Monitoring and Troubleshooting

Every Rotork Fluid Systems actuator has been fully tested before despatch to give years of trouble-free operation providing it is installed, sealed and commissioned in accordance with the instructions given in this publication.

The EH actuator’s unique double-sealed, non-intrusive enclosure provides complete protection for the actuator components. Covers should not be removed for routine inspection as this may be detrimental to the future reliability of the actuator. The control module contains no user serviceable components. The oil reservoir cover should not be removed as it contains hydraulic oil.

All electrical power supplies to the actuator must be isolated before any maintenance or inspection is carried out.

Electrical supplies must be isolated before actuator covers are removed.

If the motorised valve is rarely operated, a routine operating schedule should be set up, which may include partial stroking the actuator at regular intervals.

Routine maintenance should include the following on an annual basis:

- Check actuator to valve fixing bolts for tightness.
- Ensure valve stems and drive nuts are clean and properly lubricated.
- Check the actuator enclosure for damage, loose or missing fasteners.
- Ensure there is not an excessive build up of dust or contaminant on the actuator.
- Check for any loss of hydraulic fluid. This can be done by removing the oil fill plug when the electrical power is removed from the actuator. The oil level should be within 50mm (2”) of the filler breather. If it is necessary to top up hydraulic fluid ensure that the correct type of fluid is used. See actuator name plate
- If the oil level is low, visually inspect the actuator and tighten any hydraulic fittings that may be leaking.
- Check the operating speeds in both the open and closed directions against the test certificate supplied with the actuator.

- Fully open the actuator and turn the local control knob to stop. Leave the actuator for 30 minutes and check that the actuator has not drifted off the open limit.

Routine maintenance should include the following:

- The hydraulic oil should be replaced after 5 years if the actuator is operating a modulating valve and 10 years if operating a isolating valve (Refer to Weights and Measures, Section 12, for the volume of oil required).
- The actuator seals should be replaced after 5 years if the actuator is operating a modulating valve and 10 years if operating an isolating valve.

Hydraulic Oil

Standard Applications:

32 cSt Mineral Oil
Mobil DTE 10 Excel 32

Unless specially ordered for extreme climate conditions or other special environments, Rotork Fluid Systems EH actuators are despatched with hydraulic systems filled with 32 cSt mineral oil. This oil is suitable for actuators operating in ambient temperatures from -20˚C to 40˚C. See order specific documentation for special application.

Troubleshooting

See Fault Alarms in section 9.9 and Help Screens in section 11.
10.2 Environmental

End user advice on disposal at end of life of the product

<table>
<thead>
<tr>
<th>Subject</th>
<th>Definition</th>
<th>Remarks / examples</th>
<th>Hazardous</th>
<th>Recyclable</th>
<th>EU Waste Code</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical & Electronic Equipment</td>
<td>Printed circuit boards Wire LS1 is tripped</td>
<td>All Products All Products</td>
<td>Yes</td>
<td>Yes</td>
<td>20 01 35 17 04 10</td>
<td>Use specialist recyclers</td>
</tr>
<tr>
<td>Glass</td>
<td>Lens/Window</td>
<td>All EH actuators</td>
<td>No</td>
<td>Yes</td>
<td>16 01 20</td>
<td>Use specialist recyclers</td>
</tr>
<tr>
<td>Metals</td>
<td>Aluminium Copper/Brass Steel Mixed Metals</td>
<td>HPU, motor and motor windings.</td>
<td>No</td>
<td>No</td>
<td>14 04 02 17 04 01 17 05 05 17 04 07</td>
<td>Use licensed recyclers</td>
</tr>
<tr>
<td>Plastics</td>
<td>Glass filled nylon</td>
<td>Covers, electronics chassis</td>
<td>No</td>
<td>No</td>
<td>17 02 04</td>
<td>Use specialist recyclers</td>
</tr>
<tr>
<td>Oil</td>
<td>Mineral Food Grade Silicone</td>
<td>Standard actuator Food industry applications Low temp applications</td>
<td>Yes</td>
<td>Yes</td>
<td>13 01 10 13 01 12 13 01 11</td>
<td>Will require special treatment before disposal, use specialist recyclers or waste disposal companies</td>
</tr>
<tr>
<td>Rubber</td>
<td>Seals & O-rings</td>
<td>Cover and shaft sealing</td>
<td>Yes</td>
<td>No</td>
<td>16 01 99</td>
<td>May require special treatment before disposal, use specialist waste disposal companies</td>
</tr>
</tbody>
</table>

In all cases, check local authority regulations before disposal.
With the actuator powered up and Local or Stop selected, nine Help Screens can be accessed using the Setting Tool. Refer to section 8.1 for their location.

With Remote selected press the key on the Setting Tool. The Help Screens will be displayed.

Each screen uses bars to indicate the status of a particular control or indication function. Each bar reacts to changes in the status of its actuator function by turning “on” or “off”.

For troubleshooting, access the following Help Screens and refer to text:

H1 – Actuator limit status indicators.

H2 – Local control indicators.

H3 – Remote signal indicators.

H4 – Digital feedback indicators.

H5 – Timer, fault and monitor relay indicators.

H6 – Solenoid and pump driver outputs.

H7 – Fault indicators 1.

H8 – Fault indicators 2.

H9 – Driver logic indicators.

Moving Closed
Bar On = Actuator is moving in the Closed direction.

Holding Open Limit
Bar On = Actuator is maintaining Open Limit position.

Holding Close Limit
Bar On = Actuator is maintaining Close Limit position.

Note: Bar indication is real time and reactive.
Local Fitted
Bar On = Local controls fitted.

Hand Operation
Bar On = Manual override in use.

Note: Bar indication is real time and reactive.

Remote Mode Selected
Bar On = Remote Control selected.

Remote Stop
Bar On = Remote Stop selected.

Remote Maintain
Bar On = Remote Maintain signal present.

Remote ESD
Bar On = ESD signal present from network.

Remote 1: Open
Bar On = Remote Open signal present from network.

Remote 2: Close
Bar On = Remote Close signal present from network.

Remote 2: Maintain
Bar On = Remote Maintain signal present from network.

Remote 1: ESD
Bar On = ESD signal present from network.

Remote 2: Open
Bar On = Remote Open signal present from network.

Remote 2: Close
Bar On = Remote Close signal present from network.

Remote 2: Maintain
Bar On = Remote Maintain signal present from network.

Note: Bar indication is real time and reactive.

All remote signals designated with "1" are standard hard wired remote inputs.

When a network system such as Pakscan, Profibus or Foundation Fieldbus is in use, remote control inputs are designated with a "2".

Remote 1: Open

Remote 1: Close
Bar On = Remote Close Signal Present.

Remote 1: Maintain
Bar On = Remote Maintain signal present.
Partial Stroke / Remote-Local Command
Bar On = If in analogue control mode - a remote local command is present. If in hardwired remote control mode - partial stroke command is present.

Over Pressure
Bar On = Hydraulic system over pressure.

Hydraulic Status
Bar On = Hydraulic system active.

Solenoid Driver Fault
Bar On = Solenoid driver fault present.

Note: Bar indication is real time and reactive.

Fault Relay Output
Bar On = Fault relay energised.

Note: Bar indication is real time and reactive.

Interrupter Timer Started
Bar On = Interrupter timer running.

Interrupter Timer Inhibit
Bar On = Interrupter timer off pulse present.

Interrupter Timer Waiting for First Movement
Bar On = Interrupter timer is waiting for first movement.

Monitor Relay Output
Bar On = Monitor relay energised.
Help Screen 6

Solenoid No.1
Bar On = Solenoid No.1 energised.

Solenoid No.2
Bar On = Solenoid No.2 energised.

Solenoid No.3
Bar On = Solenoid No.3 energised.

Pump
Bar On = Pump running.

Opening
Bar On = Actuator opening.

Closing
Bar On = Actuator Closing.

Note: Bar indication is real time and reactive.

Help Screen 7

EEPROM Checksum
Bar On = EEPROM checksum error [EE].

Hardware Fault
Bar On = Hardware fault present [HA].

Local Controls Fault
Bar On = Local controls fault [LC].

Hydraulic Power Fault
Bar On = Hydraulic Power fault [PU].

Solenoid Driver Fault
Bar On = Solenoid Driver error [dr].

Position Transducer Fault
Bar On = Position Transducer error [PU].

Pressure Transducer Fault
Bar On = Pressure Transducer error [Pr].

Note: Bar indication is real time and reactive.
Over Pressure in Mid Travel
Bar On = Actuator operation has stopped due to an obstruction in mid-travel [OP].

Running in Wrong Direction
Bar On = Actuator is running in the wrong direction [dI].

Unable to Reach Pressure
Bar On = Actuator is unable to reach required pressure [uP].

Actuator Stalled in Slow Mode
Bar On = Actuator is stalled in slow mode [SL].

Actuator Stalled
Bar On = Actuator movement is stalled [St].

Partial Stroke Fault
Bar On = Actuator has failed to complete desired movement [PS].

Loss of Analogue Demand Signal
Bar On = Analogue demand signal not present [dn].

Note: Bar indication is real time and reactive.

Inhibit Command
Bar On = Actuator is operating using the interrupter timer.

De-energise All Command
Bar On = Actuator has command to de-energise all solenoids.

No Expected Movement
Bar On = Actuator has no commands to move.

Note: Bar indication is real time and reactive.

Open Command
Bar On = Actuator is acting on an Open command.

Close Command
Bar On = Actuator is acting on a Close command.

ESD Command
Bar On = Actuator is acting on an ESD command.

All Stop Command
Bar On = Stop actuator and pump.

Slow Mode Command
Bar On = Actuator is running at a slower rate.
Consult job specific EH transmittal package that was supplied with actuator.

Weights and Measures

<table>
<thead>
<tr>
<th>BINARY</th>
<th>HEX</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>05</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>06</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>07</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>08</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>09</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>0A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>0B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>0C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>0D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>0E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>0F</td>
<td>15</td>
</tr>
<tr>
<td>0000</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>0001</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>0010</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>0011</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>0100</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>0101</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>0110</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>0111</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>1000</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>1001</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>1010</td>
<td>1A</td>
<td>26</td>
</tr>
<tr>
<td>1011</td>
<td>1B</td>
<td>27</td>
</tr>
<tr>
<td>1100</td>
<td>1C</td>
<td>28</td>
</tr>
<tr>
<td>1101</td>
<td>1D</td>
<td>29</td>
</tr>
<tr>
<td>1110</td>
<td>1E</td>
<td>30</td>
</tr>
<tr>
<td>1111</td>
<td>1F</td>
<td>31</td>
</tr>
</tbody>
</table>

Table Below:

Decimal Conversion Table

<table>
<thead>
<tr>
<th>BINARY</th>
<th>HEX</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>05</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>06</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>07</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>08</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>09</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>0A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>0B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>0C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>0D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>0E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>0F</td>
<td>15</td>
</tr>
<tr>
<td>0000</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>0001</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>0010</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>0011</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>0100</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>0101</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>0110</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>0111</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>1000</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>1001</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>1010</td>
<td>1A</td>
<td>26</td>
</tr>
<tr>
<td>1011</td>
<td>1B</td>
<td>27</td>
</tr>
<tr>
<td>1100</td>
<td>1C</td>
<td>28</td>
</tr>
<tr>
<td>1101</td>
<td>1D</td>
<td>29</td>
</tr>
<tr>
<td>1110</td>
<td>1E</td>
<td>30</td>
</tr>
<tr>
<td>1111</td>
<td>1F</td>
<td>31</td>
</tr>
</tbody>
</table>

Binary, Hexadecimal and Decimal Conversion Table

<table>
<thead>
<tr>
<th>BINARY</th>
<th>HEX</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>05</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>06</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>07</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>08</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>09</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>0A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>0B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>0C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>0D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>0E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>0F</td>
<td>15</td>
</tr>
</tbody>
</table>

71
The actuator nameplate is engraved with the following information:

Serial Number: Have this available if contacting Rotork Fluid Systems for assistance.

Actuator Type: EH-Range actuator production version (i.e. EH 1.1 Pro).

Hydraulic Schematic: Actuator specific hydraulic layout and component list.

Wiring Diagram: Actuator specific information, terminal identification and connection options.

Supply Voltage: Compare this with power supply available on-site.

Maximum Current: Typically indicates combined motor full load and controller amperages.

Cable Entries: Specification of size and thread available for cable glands.

Enclosure: The ingress protection (IP) or NEMA rating for which the actuator is suitable.

Temperature Code: Maximum surface temperature rating.

Maximum Pressure: Maximum safe operating pressure for the hydraulic system.

Year of Manufacture: The year the actuator was manufactured.

Explosion-proof Cert: Details of certification when installed in hazardous environments.

Temperature Range: Approved ambient temperature range.

<table>
<thead>
<tr>
<th>Attribute/Category</th>
<th>Watertight</th>
<th>Factory Mutual (FM)</th>
<th>ATEX</th>
<th>IECEx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Actuator Type</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hydraulic Schematic</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maximum Current</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cable Entries</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Enclosure</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Temperature Code</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maximum Pressure</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Year of Manufacture</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Explosion-proof Cert</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Refer to actuator nameplate for unit specific approval details.

Rotork Fluid Systems actuators are approved to many standards. Refer to www.rotork.com for the latest information.

Rotork can supply actuators to national standards not listed below. For details please contact Rotork.

European

EH 1.1 Pro:
ATEX (94/9/EC) II 2 G. Ex d(e) IIB T4 Gb
Temperature: -20°C to +60°C
Option: -40°C to +60°C
Option: -50°C to +60°C

International

EH 1.1 Pro:
IECEx. Ex d(e) IIB T4 Gb
Temperature: -20°C to +60°C
Option: -40°C to +60°C
Option: -50°C to +60°C

Canada

EH 1.1 Pro:
Rotork Supplies CSA approved Motor, Cable, Cable Glands and Accessories. Local certification to CSA standards required.

* "e" increased safety terminal facility is only available on single-phase and DC versions when specified.

USA

EH 1.1 Pro:
FM. Class I, Division 1, Gas Groups C & D (XP/I/1/CD)
FM. Class II, Division 2, Gas Group E, F & G (DIP/II/1/EFG)
Enclosure: NEMA Type 6
Temperature Code: T4
Temperature: -40°C to +60°C
Option: -50°C to +60°C

Note: Certification temperatures are not operating temperatures, see actuator nameplate for operating temperatures.

Approved Fuses

See wiring diagram as stated on the data label for approved fuse details.

The table below shows fuse specification reference.

<table>
<thead>
<tr>
<th>Input Power Voltages</th>
<th>Bussman Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Phase 50 Hz</td>
<td>190, 200, 220, 240 VAC TDC11-250mA</td>
</tr>
<tr>
<td>3-Phase 50 Hz</td>
<td>380, 400, 415, 440, 480, 500, 525, 550, 660, 690 VAC TDC11-150mA</td>
</tr>
<tr>
<td>3-Phase 60 Hz</td>
<td>200, 208, 220, 230, 240 VAC TDC11-250mA</td>
</tr>
<tr>
<td>3-Phase 60 Hz</td>
<td>380, 400, 440, 460, 480, 575, 600, 660, 690 VAC TDC11-150mA</td>
</tr>
<tr>
<td>1-Phase 50 Hz</td>
<td>110, 115 VAC TDC11-500mA</td>
</tr>
<tr>
<td>1-Phase 50 Hz</td>
<td>220, 230, 240 VAC TDC11-250mA</td>
</tr>
<tr>
<td>1-Phase 60 Hz</td>
<td>110, 115 VAC TDC11-500mA</td>
</tr>
<tr>
<td>1-Phase 60 Hz</td>
<td>208, 220, 230, 240 VAC TDC11-250mA</td>
</tr>
<tr>
<td>24 VDC</td>
<td>TDC11-5A</td>
</tr>
</tbody>
</table>
In accordance with clause 5.1 of EN 60079-1, the critical dimensions of flamepaths relevant to the EH1.1 are as follows:

<table>
<thead>
<tr>
<th>Flamepath</th>
<th>Maximum Gap (mm)</th>
<th>Minimum L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manifold Block/ Main Enclosure (Flange Joint)</td>
<td>0.10</td>
<td>12.50</td>
</tr>
<tr>
<td>Control Knob Shaft/ Main Enclosure (Cylindrical)</td>
<td>0.20</td>
<td>25.00</td>
</tr>
<tr>
<td>Terminal Bung/ Terminal Housing (Cylindrical)</td>
<td>0.20</td>
<td>26.00</td>
</tr>
<tr>
<td>Indicator Shaft Bushing/ Main Enclosure (Cylindrical)</td>
<td>0.00</td>
<td>25.25</td>
</tr>
<tr>
<td>Indicator Shaft/ Indicator Shaft Bushing (Cylindrical)</td>
<td>0.20</td>
<td>31.75</td>
</tr>
<tr>
<td>Terminal Housing/ Main Enclosure (Cylindrical)</td>
<td>0.15</td>
<td>26.20</td>
</tr>
<tr>
<td>Terminal Cover/ Terminal Housing (Cylindrical)</td>
<td>0.15</td>
<td>14.70</td>
</tr>
</tbody>
</table>
Appendix A – Accumulator Pre-charge & Removal

1.0 Introduction

1.1 This document outlines procedures for pre-charging the accumulator, verifying pre-charge pressure and removal of the accumulator.

A charging assembly as shown below is required. The necessary components are readily available from industrial suppliers or the assembly is available for purchase from Rotork Fluid Systems. Request Rotork part number 90-183 (hose not included).

An inert gas, such as nitrogen, will also be required for pre-charging.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Gauge</td>
</tr>
<tr>
<td>2</td>
<td>Gas Chuck/T Handle</td>
</tr>
<tr>
<td>3</td>
<td>Bleed Valve</td>
</tr>
<tr>
<td>4</td>
<td>Gas Valve</td>
</tr>
<tr>
<td>5*</td>
<td>Swivel Connector</td>
</tr>
<tr>
<td>6*</td>
<td>Hose</td>
</tr>
<tr>
<td>7</td>
<td>Adaptor</td>
</tr>
</tbody>
</table>

* Required only for pre-charging, not verification or accumulator removal.

2.0 Accumulator Pre-Charging

2.1 Remove the gas valve cap.

2.2 On the charging assembly, turn the chuck (2) “T” handle fully anti-clockwise and attach the chuck to the accumulator.

2.3 Ensure the bleed valve (3) is tightly closed.

2.4 Attach the Swivel Connector (5) to the charging assembly gas valve (4) and tighten to 1-2 Nm / 10-15 in lbs.

2.5 Turn the “T” handle (2) fully clockwise. This action will open the valve.

2.6 Open the nitrogen bottle valve and SLOWLY fill the accumulator. Shut off the nitrogen supply when the gauge indicates 110% of the desired pre-charge level.

2.7 Let the pre-charge sit for 10 to 15 minutes to allow the gas temperature to stabilize. Slowly open bleed valve (3) until the desired pressure is reached. Tightly close bleed valve (3).

2.8 When finished pre-charging, turn the “T” handle (2) fully anti-clockwise, then open bleed valve (3) to release residual gas.

2.9 Use a wrench to prevent the gas valve assembly from rotating and remove the charging assembly from the accumulator.

2.10 Re-install valve cap.

3.0 Pre-charge Verification

3.1 Use the appropriate valve in the hydraulic system to discharge oil from the accumulator.

3.2 Remove the protective cover and the secondary seal from the accumulator.

3.3 Turn “T” handle (2) fully anti-clockwise. Attatch the charging assembly by screwing the gas chuck to the valve stem of the accumulator. Tighten to 1-2 Nm / 10-15 in lbs.

3.4 Close bleed valve (3).

3.5 Turn “T” handle (2) clockwise to release the accumulator pre-charge to the gauge for pressure verification.

3.6 When finished checking the pre-charge, turn “T” handle (2) fully anti-clockwise, then open bleed valve (3).

3.7 Use a wrench to prevent the gas valve assembly from rotating and remove the charging assembly from the accumulator.

3.8 Replace the gas valve cap.
4.0 Accumulator Removal

4.1 Attach the charging assembly and follow steps 3.2 through 3.5.

4.2 Open bleed valve (3) until all gas pre-charge is released from the accumulator.

4.3 Remove the charging assembly. The accumulator can now be safely removed from the system.
If your Rotork Fluid Systems actuator has been correctly installed and sealed, it will give years of trouble-free service.

Should you require technical assistance or spares, Rotork guarantees the best service in the world. Contact your local Rotork representative or the factory direct at the address on the nameplate, quoting the actuator type and serial number.

A full list of our worldwide sales and service network is available on our website at www.rotork.com

Rotork Sales and Service

Corporate Headquarters
Rotork plc

tel +44 (0)1225 733200
fax +44 (0)1225 333467
email mail@rotork.com

USA
Rotork Fluid Systems

tel +1 585 247 2304
fax +1 585 247 2308
email rfsinfo@rotork.com

Local representative:
As we are continually developing our products, the design of Rotork actuators is subject to change without notice. The latest product and technical information is available at our website www.rotork.com

The names Rotork and Rotork Fluid Systems are registered trademarks. Rotork recognises all registered trademarks.